论 $${{\,\mathrm\{textrm{PG}}\,}}(n,q)$$ 中卡梅隆-利勃勒 k 集的两个不存在结果

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jan De Beule, Jonathan Mannaert, Leo Storme
{"title":"论 $${{\\,\\mathrm\\{textrm{PG}}\\,}}(n,q)$$ 中卡梅隆-利勃勒 k 集的两个不存在结果","authors":"Jan De Beule, Jonathan Mannaert, Leo Storme","doi":"10.1007/s10623-024-01505-8","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on non-existence results for Cameron–Liebler <i>k</i>-sets. A Cameron–Liebler <i>k</i>-set is a collection of <i>k</i>-spaces in <span>\\({{\\,\\mathrm{\\textrm{PG}}\\,}}(n,q)\\)</span> or <span>\\({{\\,\\mathrm{\\textrm{AG}}\\,}}(n,q)\\)</span> admitting a certain parameter <i>x</i>, which is dependent on the size of this collection. One of the main research questions remains the (non-)existence of Cameron–Liebler <i>k</i>-sets with parameter <i>x</i>. This paper improves two non-existence results. First we show that the parameter of a non-trivial Cameron–Liebler <i>k</i>-set in <span>\\({{\\,\\mathrm{\\textrm{PG}}\\,}}(n,q)\\)</span> should be larger than <span>\\(q^{n-\\frac{5k}{2}-1}\\)</span>, which is an improvement of an earlier known lower bound. Secondly, we prove a modular equality on the parameter <i>x</i> of Cameron–Liebler <i>k</i>-sets in <span>\\({{\\,\\mathrm{\\textrm{PG}}\\,}}(n,q)\\)</span> with <span>\\(x&lt;\\frac{q^{n-k}-1}{q^{k+1}-1}\\)</span>, <span>\\(n\\ge 2k+1\\)</span>, <span>\\(n-k+1\\ge 7\\)</span> and <span>\\(n-k\\)</span> even. In the affine case we show a similar result for <span>\\(n-k+1\\ge 3\\)</span> and <span>\\(n-k\\)</span> even. This is a generalization of earlier known modular equalities in the projective and affine case.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"13 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On two non-existence results for Cameron–Liebler k-sets in $${{\\\\,\\\\mathrm{\\\\textrm{PG}}\\\\,}}(n,q)$$\",\"authors\":\"Jan De Beule, Jonathan Mannaert, Leo Storme\",\"doi\":\"10.1007/s10623-024-01505-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on non-existence results for Cameron–Liebler <i>k</i>-sets. A Cameron–Liebler <i>k</i>-set is a collection of <i>k</i>-spaces in <span>\\\\({{\\\\,\\\\mathrm{\\\\textrm{PG}}\\\\,}}(n,q)\\\\)</span> or <span>\\\\({{\\\\,\\\\mathrm{\\\\textrm{AG}}\\\\,}}(n,q)\\\\)</span> admitting a certain parameter <i>x</i>, which is dependent on the size of this collection. One of the main research questions remains the (non-)existence of Cameron–Liebler <i>k</i>-sets with parameter <i>x</i>. This paper improves two non-existence results. First we show that the parameter of a non-trivial Cameron–Liebler <i>k</i>-set in <span>\\\\({{\\\\,\\\\mathrm{\\\\textrm{PG}}\\\\,}}(n,q)\\\\)</span> should be larger than <span>\\\\(q^{n-\\\\frac{5k}{2}-1}\\\\)</span>, which is an improvement of an earlier known lower bound. Secondly, we prove a modular equality on the parameter <i>x</i> of Cameron–Liebler <i>k</i>-sets in <span>\\\\({{\\\\,\\\\mathrm{\\\\textrm{PG}}\\\\,}}(n,q)\\\\)</span> with <span>\\\\(x&lt;\\\\frac{q^{n-k}-1}{q^{k+1}-1}\\\\)</span>, <span>\\\\(n\\\\ge 2k+1\\\\)</span>, <span>\\\\(n-k+1\\\\ge 7\\\\)</span> and <span>\\\\(n-k\\\\)</span> even. In the affine case we show a similar result for <span>\\\\(n-k+1\\\\ge 3\\\\)</span> and <span>\\\\(n-k\\\\)</span> even. This is a generalization of earlier known modular equalities in the projective and affine case.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01505-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01505-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究卡梅隆-利伯勒 k 集的不存在结果。Cameron-Liebler k 集是 \({{\,\mathrm\textrm{PG}}\,}}(n,q)\) 或 \({{\,\mathrm\textrm{AG}}\,}}(n,q)\) 中的 k 空间集合,它允许一定的参数 x,而这个参数取决于这个集合的大小。本文改进了两个不存在结果。首先,我们证明了在\({{\,\mathrm{textrm{PG}},}(n,q)\)中的非难卡梅隆-利勃勒 k 集的参数应该大于\(q^{n-\frac{5k}{2}-1}\),这是对早期已知下限的改进。其次,我们证明了在\({{\,\mathrm{textrm{PG}}\,}}(n,q)\)中卡梅隆-利伯勒 k 集的参数 x 上的模相等,其中 \(x<\frac{q^{n-k}-1}{q^{k+1}-1}\)、\(n/ge 2k+1\)、\(n-k+1/ge 7\) 和\(n-k\) 偶数。在仿射情况下,我们对(n-k+1ge 3)和(n-k)偶数证明了类似的结果。这是对早先已知的投影和仿射情况下的模等式的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On two non-existence results for Cameron–Liebler k-sets in $${{\,\mathrm{\textrm{PG}}\,}}(n,q)$$

This paper focuses on non-existence results for Cameron–Liebler k-sets. A Cameron–Liebler k-set is a collection of k-spaces in \({{\,\mathrm{\textrm{PG}}\,}}(n,q)\) or \({{\,\mathrm{\textrm{AG}}\,}}(n,q)\) admitting a certain parameter x, which is dependent on the size of this collection. One of the main research questions remains the (non-)existence of Cameron–Liebler k-sets with parameter x. This paper improves two non-existence results. First we show that the parameter of a non-trivial Cameron–Liebler k-set in \({{\,\mathrm{\textrm{PG}}\,}}(n,q)\) should be larger than \(q^{n-\frac{5k}{2}-1}\), which is an improvement of an earlier known lower bound. Secondly, we prove a modular equality on the parameter x of Cameron–Liebler k-sets in \({{\,\mathrm{\textrm{PG}}\,}}(n,q)\) with \(x<\frac{q^{n-k}-1}{q^{k+1}-1}\), \(n\ge 2k+1\), \(n-k+1\ge 7\) and \(n-k\) even. In the affine case we show a similar result for \(n-k+1\ge 3\) and \(n-k\) even. This is a generalization of earlier known modular equalities in the projective and affine case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信