Thomas S. Kuntzleman*, Joshua B. Kenney and Melissa Hemling,
{"title":"使用无痕标记进行探究式实验","authors":"Thomas S. Kuntzleman*, Joshua B. Kenney and Melissa Hemling, ","doi":"10.1021/acs.jchemed.4c0091910.1021/acs.jchemed.4c00919","DOIUrl":null,"url":null,"abstract":"<p >A previous article in this <i>Journal</i> focuses on “No-Mess” coloring products that utilize the chemical reaction between colorless leuco dyes and zinc ions, which act as Lewis acids ( <cite><i>J. Chem. Educ.</i></cite> <span>2022</span>, <em>99</em> (6), 2364−2371). This reaction causes the leuco dyes to become colored. There are two main types of No-Mess marking systems. The first type includes markers containing leuco dyes that become colored upon contact with zinc ions embedded in marking paper. In the second type, the system is reversed. The markers contain zinc ions that activate leuco dyes embedded in the paper. These products offer new opportunities for guided and open inquiry-based investigations. This paper reports that solutions of zinc ions develop the color of leuco marker dyes to a degree comparable with commercial systems. While solutions of other metal ions also induce this color change, they do so to a lesser extent. Therefore, using zinc ion solutions allows for experiments and demonstrations with No-Mess marking products to be more visually stimulating than those previously reported.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 10","pages":"4523–4527 4523–4527"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inquiry-Based Experiments with No-Mess Markers\",\"authors\":\"Thomas S. Kuntzleman*, Joshua B. Kenney and Melissa Hemling, \",\"doi\":\"10.1021/acs.jchemed.4c0091910.1021/acs.jchemed.4c00919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A previous article in this <i>Journal</i> focuses on “No-Mess” coloring products that utilize the chemical reaction between colorless leuco dyes and zinc ions, which act as Lewis acids ( <cite><i>J. Chem. Educ.</i></cite> <span>2022</span>, <em>99</em> (6), 2364−2371). This reaction causes the leuco dyes to become colored. There are two main types of No-Mess marking systems. The first type includes markers containing leuco dyes that become colored upon contact with zinc ions embedded in marking paper. In the second type, the system is reversed. The markers contain zinc ions that activate leuco dyes embedded in the paper. These products offer new opportunities for guided and open inquiry-based investigations. This paper reports that solutions of zinc ions develop the color of leuco marker dyes to a degree comparable with commercial systems. While solutions of other metal ions also induce this color change, they do so to a lesser extent. Therefore, using zinc ion solutions allows for experiments and demonstrations with No-Mess marking products to be more visually stimulating than those previously reported.</p>\",\"PeriodicalId\":43,\"journal\":{\"name\":\"Journal of Chemical Education\",\"volume\":\"101 10\",\"pages\":\"4523–4527 4523–4527\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Education\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00919\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00919","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A previous article in this Journal focuses on “No-Mess” coloring products that utilize the chemical reaction between colorless leuco dyes and zinc ions, which act as Lewis acids ( J. Chem. Educ.2022, 99 (6), 2364−2371). This reaction causes the leuco dyes to become colored. There are two main types of No-Mess marking systems. The first type includes markers containing leuco dyes that become colored upon contact with zinc ions embedded in marking paper. In the second type, the system is reversed. The markers contain zinc ions that activate leuco dyes embedded in the paper. These products offer new opportunities for guided and open inquiry-based investigations. This paper reports that solutions of zinc ions develop the color of leuco marker dyes to a degree comparable with commercial systems. While solutions of other metal ions also induce this color change, they do so to a lesser extent. Therefore, using zinc ion solutions allows for experiments and demonstrations with No-Mess marking products to be more visually stimulating than those previously reported.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.