Yue Han , Yu-Tong Liu , Lu Chen , Hao-Fan Sun , Guang-Hao Zhu , Dong-Ning Kang , Qi Zhou , Hui Tang , Yu-Ling Yin , Jie Hou
{"title":"从 Platycladi cacumen 中提取的桧黄酮是肠道微生物 Loop-1 β-葡萄糖醛酸酶的强效广谱抑制剂:抑制动力学和分子模拟。","authors":"Yue Han , Yu-Tong Liu , Lu Chen , Hao-Fan Sun , Guang-Hao Zhu , Dong-Ning Kang , Qi Zhou , Hui Tang , Yu-Ling Yin , Jie Hou","doi":"10.1016/j.cbi.2024.111261","DOIUrl":null,"url":null,"abstract":"<div><div>Gut microbial Loop-1 β-glucuronidases (gmGUS) played an important role in irinotecan-induced gastrointestinal toxicity by regulating the level of its active metabolite SN38 through enterohepatic recirculation. gmGUS inhibition has emerged as a promising approach to relieve its dose-limiting intestinal toxicity and improve its medication efficacy. This study aims to investigate the inhibitory effects and mechanisms of <em>Platycladi cacumen</em> and its main constituent hinokiflavone against four different types of Loop-1 gmGUS (<em>Ee</em>GUS, <em>Sa</em>GUS, <em>Cp</em>GUS and <em>Ec</em>GUS). Our results showed that the ethanol extract of <em>Platycladi cacumen</em> displayed strong broad-spectrum inhibition against four gmGUS, and hinokiflavone could potently inhibit <em>Ee</em>GUS, <em>Sa</em>GUS, <em>Cp</em>GUS and <em>Ec</em>GUS with IC<sub>50</sub> values of 0.09 ± 0.01 μM, 0.44 ± 0.01 μM, 0.20 ± 0.01 μM and 0.69 ± 0.10 μM, respectively. Inhibition kinetic analyses demonstrated that hinokiflavone acted as a strong competitive inhibitor of <em>Ee</em>GUS with <em>K</em><sub><em>i</em></sub> value of 0.13 μM, while it displayed non-competitive inhibition against <em>Sa</em>GUS, <em>Cp</em>GUS and <em>Ec</em>GUS, with the <em>K</em><sub><em>i</em></sub> values of 0.43 μM, 0.33 μM and 0.76 μM, respectively. Docking simulations revealed that hinokiflavone could tightly bind with Tyr-485 and Glu-516 in catalytic sites of <em>E</em>eGUS, as well it created strong interactions with amino acids in loop structures of <em>Sa</em>GUS (Asn-362), <em>Cp</em>GUS (Phe-363, Met-364, Ala-365 and Arg-375) and <em>Ec</em>GUS (Leu-361) to interfere the substrate entry into the catalytic pocket. Collectively, these results confirmed that hinokiflavone from <em>Platycladi cacumen</em> is a potent naturally occurring inhibitor of gmGUS with broad efficiency, suggesting hinokiflavone will be helpful for alleviating intestinal toxicity in irinotecan therapy.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"404 ","pages":"Article 111261"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hinokiflavone from Platycladi cacumen as a potent broad-spectrum inhibitor of gut microbial Loop-1 β-glucuronidases: Inhibition kinetics and molecular simulation\",\"authors\":\"Yue Han , Yu-Tong Liu , Lu Chen , Hao-Fan Sun , Guang-Hao Zhu , Dong-Ning Kang , Qi Zhou , Hui Tang , Yu-Ling Yin , Jie Hou\",\"doi\":\"10.1016/j.cbi.2024.111261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gut microbial Loop-1 β-glucuronidases (gmGUS) played an important role in irinotecan-induced gastrointestinal toxicity by regulating the level of its active metabolite SN38 through enterohepatic recirculation. gmGUS inhibition has emerged as a promising approach to relieve its dose-limiting intestinal toxicity and improve its medication efficacy. This study aims to investigate the inhibitory effects and mechanisms of <em>Platycladi cacumen</em> and its main constituent hinokiflavone against four different types of Loop-1 gmGUS (<em>Ee</em>GUS, <em>Sa</em>GUS, <em>Cp</em>GUS and <em>Ec</em>GUS). Our results showed that the ethanol extract of <em>Platycladi cacumen</em> displayed strong broad-spectrum inhibition against four gmGUS, and hinokiflavone could potently inhibit <em>Ee</em>GUS, <em>Sa</em>GUS, <em>Cp</em>GUS and <em>Ec</em>GUS with IC<sub>50</sub> values of 0.09 ± 0.01 μM, 0.44 ± 0.01 μM, 0.20 ± 0.01 μM and 0.69 ± 0.10 μM, respectively. Inhibition kinetic analyses demonstrated that hinokiflavone acted as a strong competitive inhibitor of <em>Ee</em>GUS with <em>K</em><sub><em>i</em></sub> value of 0.13 μM, while it displayed non-competitive inhibition against <em>Sa</em>GUS, <em>Cp</em>GUS and <em>Ec</em>GUS, with the <em>K</em><sub><em>i</em></sub> values of 0.43 μM, 0.33 μM and 0.76 μM, respectively. Docking simulations revealed that hinokiflavone could tightly bind with Tyr-485 and Glu-516 in catalytic sites of <em>E</em>eGUS, as well it created strong interactions with amino acids in loop structures of <em>Sa</em>GUS (Asn-362), <em>Cp</em>GUS (Phe-363, Met-364, Ala-365 and Arg-375) and <em>Ec</em>GUS (Leu-361) to interfere the substrate entry into the catalytic pocket. Collectively, these results confirmed that hinokiflavone from <em>Platycladi cacumen</em> is a potent naturally occurring inhibitor of gmGUS with broad efficiency, suggesting hinokiflavone will be helpful for alleviating intestinal toxicity in irinotecan therapy.</div></div>\",\"PeriodicalId\":274,\"journal\":{\"name\":\"Chemico-Biological Interactions\",\"volume\":\"404 \",\"pages\":\"Article 111261\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemico-Biological Interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009279724004071\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279724004071","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hinokiflavone from Platycladi cacumen as a potent broad-spectrum inhibitor of gut microbial Loop-1 β-glucuronidases: Inhibition kinetics and molecular simulation
Gut microbial Loop-1 β-glucuronidases (gmGUS) played an important role in irinotecan-induced gastrointestinal toxicity by regulating the level of its active metabolite SN38 through enterohepatic recirculation. gmGUS inhibition has emerged as a promising approach to relieve its dose-limiting intestinal toxicity and improve its medication efficacy. This study aims to investigate the inhibitory effects and mechanisms of Platycladi cacumen and its main constituent hinokiflavone against four different types of Loop-1 gmGUS (EeGUS, SaGUS, CpGUS and EcGUS). Our results showed that the ethanol extract of Platycladi cacumen displayed strong broad-spectrum inhibition against four gmGUS, and hinokiflavone could potently inhibit EeGUS, SaGUS, CpGUS and EcGUS with IC50 values of 0.09 ± 0.01 μM, 0.44 ± 0.01 μM, 0.20 ± 0.01 μM and 0.69 ± 0.10 μM, respectively. Inhibition kinetic analyses demonstrated that hinokiflavone acted as a strong competitive inhibitor of EeGUS with Ki value of 0.13 μM, while it displayed non-competitive inhibition against SaGUS, CpGUS and EcGUS, with the Ki values of 0.43 μM, 0.33 μM and 0.76 μM, respectively. Docking simulations revealed that hinokiflavone could tightly bind with Tyr-485 and Glu-516 in catalytic sites of EeGUS, as well it created strong interactions with amino acids in loop structures of SaGUS (Asn-362), CpGUS (Phe-363, Met-364, Ala-365 and Arg-375) and EcGUS (Leu-361) to interfere the substrate entry into the catalytic pocket. Collectively, these results confirmed that hinokiflavone from Platycladi cacumen is a potent naturally occurring inhibitor of gmGUS with broad efficiency, suggesting hinokiflavone will be helpful for alleviating intestinal toxicity in irinotecan therapy.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.