通过机器学习缩小电子结构计算的差距。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Attila Cangi
{"title":"通过机器学习缩小电子结构计算的差距。","authors":"Attila Cangi","doi":"10.1038/s43588-024-00707-3","DOIUrl":null,"url":null,"abstract":"A highly efficient reconstruction method has been developed for the direct computation of Hamiltonian matrices in the atomic orbital basis from density functional theory calculations originally performed in the plane wave basis. This enables machine learning calculations of electronic structures on a large scale, which are otherwise not feasible with standard methods, and thus fills a methodological gap in terms of accessible length scales.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"729-730"},"PeriodicalIF":12.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the gap in electronic structure calculations via machine learning\",\"authors\":\"Attila Cangi\",\"doi\":\"10.1038/s43588-024-00707-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A highly efficient reconstruction method has been developed for the direct computation of Hamiltonian matrices in the atomic orbital basis from density functional theory calculations originally performed in the plane wave basis. This enables machine learning calculations of electronic structures on a large scale, which are otherwise not feasible with standard methods, and thus fills a methodological gap in terms of accessible length scales.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 10\",\"pages\":\"729-730\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00707-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00707-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种高效的重构方法,可以从最初在平面波基础上进行的密度泛函理论计算直接计算原子轨道基础上的哈密顿矩阵。这使得大规模电子结构的机器学习计算成为可能,否则标准方法是不可行的,从而填补了可访问长度尺度方面的方法论空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bridging the gap in electronic structure calculations via machine learning

Bridging the gap in electronic structure calculations via machine learning
A highly efficient reconstruction method has been developed for the direct computation of Hamiltonian matrices in the atomic orbital basis from density functional theory calculations originally performed in the plane wave basis. This enables machine learning calculations of electronic structures on a large scale, which are otherwise not feasible with standard methods, and thus fills a methodological gap in terms of accessible length scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信