{"title":"复杂网络上非指数分布疾病阶段的免疫流行病学模型。","authors":"Junyuan Yang , Xinyi Duan , Guiquan Sun","doi":"10.1016/j.jtbi.2024.111964","DOIUrl":null,"url":null,"abstract":"<div><div>Most of epidemic models assume that duration of the disease phase is distributed exponentially for the simplification of model formulation and analysis. Actually, the exponentially distributed assumption on the description of disease stages is hard to accurately approximate the interplay of drug concentration and viral load within host. In this article, we formulate an immuno-epidemiological epidemic model on complex networks, which is composed of ordinary differential equations and integral equations. The linkage of within- and between-host is connected by setting that the death caused by the disease is an increasing function in viral load within host. Mathematical analysis of the model includes the existence of the solution to the epidemiological model on complex networks, the existence and stability of equilibrium, which are completely determined by the basic reproduction number of the between-host system. Numerical analysis are shown that the non-exponentially distributions and the topology of networks have significant roles in the prediction of epidemic patterns.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An immuno-epidemiological model with non-exponentially distributed disease stage on complex networks\",\"authors\":\"Junyuan Yang , Xinyi Duan , Guiquan Sun\",\"doi\":\"10.1016/j.jtbi.2024.111964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most of epidemic models assume that duration of the disease phase is distributed exponentially for the simplification of model formulation and analysis. Actually, the exponentially distributed assumption on the description of disease stages is hard to accurately approximate the interplay of drug concentration and viral load within host. In this article, we formulate an immuno-epidemiological epidemic model on complex networks, which is composed of ordinary differential equations and integral equations. The linkage of within- and between-host is connected by setting that the death caused by the disease is an increasing function in viral load within host. Mathematical analysis of the model includes the existence of the solution to the epidemiological model on complex networks, the existence and stability of equilibrium, which are completely determined by the basic reproduction number of the between-host system. Numerical analysis are shown that the non-exponentially distributions and the topology of networks have significant roles in the prediction of epidemic patterns.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002492\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002492","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An immuno-epidemiological model with non-exponentially distributed disease stage on complex networks
Most of epidemic models assume that duration of the disease phase is distributed exponentially for the simplification of model formulation and analysis. Actually, the exponentially distributed assumption on the description of disease stages is hard to accurately approximate the interplay of drug concentration and viral load within host. In this article, we formulate an immuno-epidemiological epidemic model on complex networks, which is composed of ordinary differential equations and integral equations. The linkage of within- and between-host is connected by setting that the death caused by the disease is an increasing function in viral load within host. Mathematical analysis of the model includes the existence of the solution to the epidemiological model on complex networks, the existence and stability of equilibrium, which are completely determined by the basic reproduction number of the between-host system. Numerical analysis are shown that the non-exponentially distributions and the topology of networks have significant roles in the prediction of epidemic patterns.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.