{"title":"复杂网络上非指数分布疾病阶段的免疫流行病学模型。","authors":"Junyuan Yang , Xinyi Duan , Guiquan Sun","doi":"10.1016/j.jtbi.2024.111964","DOIUrl":null,"url":null,"abstract":"<div><div>Most of epidemic models assume that duration of the disease phase is distributed exponentially for the simplification of model formulation and analysis. Actually, the exponentially distributed assumption on the description of disease stages is hard to accurately approximate the interplay of drug concentration and viral load within host. In this article, we formulate an immuno-epidemiological epidemic model on complex networks, which is composed of ordinary differential equations and integral equations. The linkage of within- and between-host is connected by setting that the death caused by the disease is an increasing function in viral load within host. Mathematical analysis of the model includes the existence of the solution to the epidemiological model on complex networks, the existence and stability of equilibrium, which are completely determined by the basic reproduction number of the between-host system. Numerical analysis are shown that the non-exponentially distributions and the topology of networks have significant roles in the prediction of epidemic patterns.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111964"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An immuno-epidemiological model with non-exponentially distributed disease stage on complex networks\",\"authors\":\"Junyuan Yang , Xinyi Duan , Guiquan Sun\",\"doi\":\"10.1016/j.jtbi.2024.111964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most of epidemic models assume that duration of the disease phase is distributed exponentially for the simplification of model formulation and analysis. Actually, the exponentially distributed assumption on the description of disease stages is hard to accurately approximate the interplay of drug concentration and viral load within host. In this article, we formulate an immuno-epidemiological epidemic model on complex networks, which is composed of ordinary differential equations and integral equations. The linkage of within- and between-host is connected by setting that the death caused by the disease is an increasing function in viral load within host. Mathematical analysis of the model includes the existence of the solution to the epidemiological model on complex networks, the existence and stability of equilibrium, which are completely determined by the basic reproduction number of the between-host system. Numerical analysis are shown that the non-exponentially distributions and the topology of networks have significant roles in the prediction of epidemic patterns.</div></div>\",\"PeriodicalId\":54763,\"journal\":{\"name\":\"Journal of Theoretical Biology\",\"volume\":\"595 \",\"pages\":\"Article 111964\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002492\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002492","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
An immuno-epidemiological model with non-exponentially distributed disease stage on complex networks
Most of epidemic models assume that duration of the disease phase is distributed exponentially for the simplification of model formulation and analysis. Actually, the exponentially distributed assumption on the description of disease stages is hard to accurately approximate the interplay of drug concentration and viral load within host. In this article, we formulate an immuno-epidemiological epidemic model on complex networks, which is composed of ordinary differential equations and integral equations. The linkage of within- and between-host is connected by setting that the death caused by the disease is an increasing function in viral load within host. Mathematical analysis of the model includes the existence of the solution to the epidemiological model on complex networks, the existence and stability of equilibrium, which are completely determined by the basic reproduction number of the between-host system. Numerical analysis are shown that the non-exponentially distributions and the topology of networks have significant roles in the prediction of epidemic patterns.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.