生成用于硅学试验的 TAVI 患者虚拟队列:统计形状和机器学习分析。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Roberta Scuoppo, Salvatore Castelbuono, Stefano Cannata, Giovanni Gentile, Valentina Agnese, Diego Bellavia, Caterina Gandolfo, Salvatore Pasta
{"title":"生成用于硅学试验的 TAVI 患者虚拟队列:统计形状和机器学习分析。","authors":"Roberta Scuoppo, Salvatore Castelbuono, Stefano Cannata, Giovanni Gentile, Valentina Agnese, Diego Bellavia, Caterina Gandolfo, Salvatore Pasta","doi":"10.1007/s11517-024-03215-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In silico trials using computational modeling and simulations can complement clinical trials to improve the time-to-market of complex cardiovascular devices in humans. This study aims to investigate the significance of synthetic data in developing in silico trials for assessing the safety and efficacy of cardiovascular devices, focusing on bioprostheses designed for transcatheter aortic valve implantation (TAVI).</p><p><strong>Methods: </strong>A statistical shape model (SSM) was employed to extract uncorrelated shape features from TAVI patients, enabling the augmentation of the original patient population into a clinically validated synthetic cohort. Machine learning techniques were utilized not only for risk stratification and classification but also for predicting the physiological variability within the original patient population.</p><p><strong>Results: </strong>By randomly varying the statistical shape modes within a range of ± 2σ, a hundred virtual patients were generated, forming the synthetic cohort. Validation against the original patient population was conducted using morphological measurements. Support vector machine regression, based on selected shape modes (principal component scores), effectively predicted the peak pressure gradient across the stenosis (R-squared of 0.551 and RMSE of 11.67 mmHg). Multilayer perceptron neural network accurately predicted the optimal device size for implantation with high sensitivity and specificity (AUC = 0.98).</p><p><strong>Conclusion: </strong>The study highlights the potential of integrating computational predictions, advanced machine learning techniques, and synthetic data generation to improve predictive accuracy and assess TAVI-related outcomes through in silico trials.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of a virtual cohort of TAVI patients for in silico trials: a statistical shape and machine learning analysis.\",\"authors\":\"Roberta Scuoppo, Salvatore Castelbuono, Stefano Cannata, Giovanni Gentile, Valentina Agnese, Diego Bellavia, Caterina Gandolfo, Salvatore Pasta\",\"doi\":\"10.1007/s11517-024-03215-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>In silico trials using computational modeling and simulations can complement clinical trials to improve the time-to-market of complex cardiovascular devices in humans. This study aims to investigate the significance of synthetic data in developing in silico trials for assessing the safety and efficacy of cardiovascular devices, focusing on bioprostheses designed for transcatheter aortic valve implantation (TAVI).</p><p><strong>Methods: </strong>A statistical shape model (SSM) was employed to extract uncorrelated shape features from TAVI patients, enabling the augmentation of the original patient population into a clinically validated synthetic cohort. Machine learning techniques were utilized not only for risk stratification and classification but also for predicting the physiological variability within the original patient population.</p><p><strong>Results: </strong>By randomly varying the statistical shape modes within a range of ± 2σ, a hundred virtual patients were generated, forming the synthetic cohort. Validation against the original patient population was conducted using morphological measurements. Support vector machine regression, based on selected shape modes (principal component scores), effectively predicted the peak pressure gradient across the stenosis (R-squared of 0.551 and RMSE of 11.67 mmHg). Multilayer perceptron neural network accurately predicted the optimal device size for implantation with high sensitivity and specificity (AUC = 0.98).</p><p><strong>Conclusion: </strong>The study highlights the potential of integrating computational predictions, advanced machine learning techniques, and synthetic data generation to improve predictive accuracy and assess TAVI-related outcomes through in silico trials.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03215-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03215-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用计算建模和模拟进行的硅学试验可作为临床试验的补充,从而缩短复杂心血管设备在人体中的上市时间。本研究旨在调查合成数据在开发用于评估心血管设备安全性和有效性的硅学试验中的意义,重点是经导管主动脉瓣植入术(TAVI)设计的生物假体:方法:采用统计形状模型(SSM)从经导管主动脉瓣植入术患者中提取不相关的形状特征,从而将原始患者群体扩充为经过临床验证的合成队列。机器学习技术不仅用于风险分层和分类,还用于预测原始患者群体的生理变异性:结果:通过在± 2σ 范围内随机改变统计形状模式,生成了一百名虚拟患者,形成了合成队列。使用形态测量方法对原始患者群体进行了验证。基于所选形状模式(主成分得分)的支持向量机回归有效预测了狭窄处的峰值压力梯度(R 方为 0.551,RMSE 为 11.67 mmHg)。多层感知器神经网络准确预测了植入设备的最佳尺寸,具有很高的灵敏度和特异性(AUC = 0.98):该研究强调了将计算预测、先进的机器学习技术和合成数据生成整合在一起的潜力,以提高预测准确性,并通过硅学试验评估 TAVI 相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of a virtual cohort of TAVI patients for in silico trials: a statistical shape and machine learning analysis.

Purpose: In silico trials using computational modeling and simulations can complement clinical trials to improve the time-to-market of complex cardiovascular devices in humans. This study aims to investigate the significance of synthetic data in developing in silico trials for assessing the safety and efficacy of cardiovascular devices, focusing on bioprostheses designed for transcatheter aortic valve implantation (TAVI).

Methods: A statistical shape model (SSM) was employed to extract uncorrelated shape features from TAVI patients, enabling the augmentation of the original patient population into a clinically validated synthetic cohort. Machine learning techniques were utilized not only for risk stratification and classification but also for predicting the physiological variability within the original patient population.

Results: By randomly varying the statistical shape modes within a range of ± 2σ, a hundred virtual patients were generated, forming the synthetic cohort. Validation against the original patient population was conducted using morphological measurements. Support vector machine regression, based on selected shape modes (principal component scores), effectively predicted the peak pressure gradient across the stenosis (R-squared of 0.551 and RMSE of 11.67 mmHg). Multilayer perceptron neural network accurately predicted the optimal device size for implantation with high sensitivity and specificity (AUC = 0.98).

Conclusion: The study highlights the potential of integrating computational predictions, advanced machine learning techniques, and synthetic data generation to improve predictive accuracy and assess TAVI-related outcomes through in silico trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信