{"title":"浏览肽/肽低聚物的 1E+60 化学空间。","authors":"Markus Orsi, Jean-Louis Reymond","doi":"10.1002/minf.202400186","DOIUrl":null,"url":null,"abstract":"<p><p>Herein we report a virtual library of 1E+60 members, a common estimate for the size of the drug-like chemical space. The library consists of linear or cyclic oligomers forming molecules within the size range of peptide drugs. We demonstrate ligand-based virtual screening using a genetic algorithm.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400186"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating a 1E+60 Chemical Space of Peptide/Peptoid Oligomers.\",\"authors\":\"Markus Orsi, Jean-Louis Reymond\",\"doi\":\"10.1002/minf.202400186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein we report a virtual library of 1E+60 members, a common estimate for the size of the drug-like chemical space. The library consists of linear or cyclic oligomers forming molecules within the size range of peptide drugs. We demonstrate ligand-based virtual screening using a genetic algorithm.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\" \",\"pages\":\"e202400186\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202400186\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400186","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Navigating a 1E+60 Chemical Space of Peptide/Peptoid Oligomers.
Herein we report a virtual library of 1E+60 members, a common estimate for the size of the drug-like chemical space. The library consists of linear or cyclic oligomers forming molecules within the size range of peptide drugs. We demonstrate ligand-based virtual screening using a genetic algorithm.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.