Simone Bonelli, Margot Lo Pinto, Yihong Ye, Stephan A Müller, Stefan F Lichtenthaler, Simone Dario Scilabra
{"title":"泛素羧基末端水解酶 19 缺陷细胞的蛋白质组学特征揭示了 USP19 在溶酶体蛋白分泌中的作用。","authors":"Simone Bonelli, Margot Lo Pinto, Yihong Ye, Stephan A Müller, Stefan F Lichtenthaler, Simone Dario Scilabra","doi":"10.1016/j.mcpro.2024.100854","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase, characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum. Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from endoplasmic reticulum-associated protein degradation in a catalytic-independent manner, promote autophagy, and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by the loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a deubiquitinase substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation, and lysosome function. This mechanism resembled the recently described \"lysosomal exocytosis,\" by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to the secretion of lysosomal proteins, including LGMN.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100854"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic Characterization of Ubiquitin Carboxyl-Terminal Hydrolase 19 Deficient Cells Reveals a Role for USP19 in the Secretion of Lysosomal Proteins.\",\"authors\":\"Simone Bonelli, Margot Lo Pinto, Yihong Ye, Stephan A Müller, Stefan F Lichtenthaler, Simone Dario Scilabra\",\"doi\":\"10.1016/j.mcpro.2024.100854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase, characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum. Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from endoplasmic reticulum-associated protein degradation in a catalytic-independent manner, promote autophagy, and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by the loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a deubiquitinase substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation, and lysosome function. This mechanism resembled the recently described \\\"lysosomal exocytosis,\\\" by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to the secretion of lysosomal proteins, including LGMN.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100854\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2024.100854\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100854","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Proteomic Characterization of Ubiquitin Carboxyl-Terminal Hydrolase 19 Deficient Cells Reveals a Role for USP19 in the Secretion of Lysosomal Proteins.
Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase, characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum. Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from endoplasmic reticulum-associated protein degradation in a catalytic-independent manner, promote autophagy, and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by the loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a deubiquitinase substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation, and lysosome function. This mechanism resembled the recently described "lysosomal exocytosis," by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to the secretion of lysosomal proteins, including LGMN.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes