Raksha Sreeramachandra Murthy, Rachel Elsanadi, John Soliman, Yan Li, Li-Dek Chou, Dennis Sprecher, Kristen M Kelly, Zhongping Chen
{"title":"用于诊断和监测遗传性出血性远端血管扩张症的 1.7 微米光学相干断层扫描血管造影术 - 一项试点研究。","authors":"Raksha Sreeramachandra Murthy, Rachel Elsanadi, John Soliman, Yan Li, Li-Dek Chou, Dennis Sprecher, Kristen M Kelly, Zhongping Chen","doi":"10.1109/TBME.2024.3473871","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Develop a multi-functional imaging system that combines 1.7μm optical coherence tomography/angiography (OCT/OCTA) to accurately interrogate Hereditary Hemorrhagic Telangiectasia (HHT) skin lesions.</p><p><strong>Methods: </strong>The study involved imaging HHT skin lesions on five subjects including lips, hands, and chest. We assessed the attributes of both HHT lesions and the healthy vasculature around them in these individuals, employing quantifiable measures such as vascular density and diameter. Additionally, we performed scans on an HHT patient who had undergone anti-angiogenic therapy, allowing us to observe changes in vasculature before and after treatment.</p><p><strong>Results: </strong>The results from this pilot study demonstrate the feasibility of evaluating the HHT lesion using this novel methodology and suggest the potential of OCTA to noninvasively track HHT lesions over time. The average percentage change in density between HHT patients' lesions and control was 37%. The percentage increase in vessel diameter between lesion and control vessels in HHT patients was 23.21%.</p><p><strong>Conclusion: </strong>In this study, we demonstrated that OCTA, as a functional extension of OCT, can non-invasively scan HHT lesions in vivo. We scanned five subjects with HHT lesions in various areas (lip, ear, finger, and palm) and quantified vascular density and diameter in both the lesions and adjacent healthy tissue. This non-invasive method will permit a more comprehensive examination of HHT lesions.</p><p><strong>Significance: </strong>This method of non-invasive imaging could offer new insights into the physiology, management, and therapeutics of HHT-associated lesion development and bleeding.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1.7-micron Optical Coherence Tomography Angiography for diagnosis and monitoring of Hereditary Hemorrhagic Telangiectasia - A pilot study.\",\"authors\":\"Raksha Sreeramachandra Murthy, Rachel Elsanadi, John Soliman, Yan Li, Li-Dek Chou, Dennis Sprecher, Kristen M Kelly, Zhongping Chen\",\"doi\":\"10.1109/TBME.2024.3473871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Develop a multi-functional imaging system that combines 1.7μm optical coherence tomography/angiography (OCT/OCTA) to accurately interrogate Hereditary Hemorrhagic Telangiectasia (HHT) skin lesions.</p><p><strong>Methods: </strong>The study involved imaging HHT skin lesions on five subjects including lips, hands, and chest. We assessed the attributes of both HHT lesions and the healthy vasculature around them in these individuals, employing quantifiable measures such as vascular density and diameter. Additionally, we performed scans on an HHT patient who had undergone anti-angiogenic therapy, allowing us to observe changes in vasculature before and after treatment.</p><p><strong>Results: </strong>The results from this pilot study demonstrate the feasibility of evaluating the HHT lesion using this novel methodology and suggest the potential of OCTA to noninvasively track HHT lesions over time. The average percentage change in density between HHT patients' lesions and control was 37%. The percentage increase in vessel diameter between lesion and control vessels in HHT patients was 23.21%.</p><p><strong>Conclusion: </strong>In this study, we demonstrated that OCTA, as a functional extension of OCT, can non-invasively scan HHT lesions in vivo. We scanned five subjects with HHT lesions in various areas (lip, ear, finger, and palm) and quantified vascular density and diameter in both the lesions and adjacent healthy tissue. This non-invasive method will permit a more comprehensive examination of HHT lesions.</p><p><strong>Significance: </strong>This method of non-invasive imaging could offer new insights into the physiology, management, and therapeutics of HHT-associated lesion development and bleeding.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2024.3473871\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3473871","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
1.7-micron Optical Coherence Tomography Angiography for diagnosis and monitoring of Hereditary Hemorrhagic Telangiectasia - A pilot study.
Objective: Develop a multi-functional imaging system that combines 1.7μm optical coherence tomography/angiography (OCT/OCTA) to accurately interrogate Hereditary Hemorrhagic Telangiectasia (HHT) skin lesions.
Methods: The study involved imaging HHT skin lesions on five subjects including lips, hands, and chest. We assessed the attributes of both HHT lesions and the healthy vasculature around them in these individuals, employing quantifiable measures such as vascular density and diameter. Additionally, we performed scans on an HHT patient who had undergone anti-angiogenic therapy, allowing us to observe changes in vasculature before and after treatment.
Results: The results from this pilot study demonstrate the feasibility of evaluating the HHT lesion using this novel methodology and suggest the potential of OCTA to noninvasively track HHT lesions over time. The average percentage change in density between HHT patients' lesions and control was 37%. The percentage increase in vessel diameter between lesion and control vessels in HHT patients was 23.21%.
Conclusion: In this study, we demonstrated that OCTA, as a functional extension of OCT, can non-invasively scan HHT lesions in vivo. We scanned five subjects with HHT lesions in various areas (lip, ear, finger, and palm) and quantified vascular density and diameter in both the lesions and adjacent healthy tissue. This non-invasive method will permit a more comprehensive examination of HHT lesions.
Significance: This method of non-invasive imaging could offer new insights into the physiology, management, and therapeutics of HHT-associated lesion development and bleeding.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.