优化筛查 COVID-19 的测试方案:多目标模型。

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES
Hadi Moheb-Alizadeh, Donald P Warsing, Richard E Kouri, Sajjad Taghiyeh, Robert B Handfield
{"title":"优化筛查 COVID-19 的测试方案:多目标模型。","authors":"Hadi Moheb-Alizadeh, Donald P Warsing, Richard E Kouri, Sajjad Taghiyeh, Robert B Handfield","doi":"10.1007/s10729-024-09688-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we develop a new multi-objective simulated annealing (MOSA) algorithm to generate optimal testing protocols for infectious diseases, using the COVID-19 pandemic as our context. A SEIR (susceptible-exposed-infected-recovered) epidemiological model is embedded as the computational platform for our MOSA algorithm to optimize testing protocols for screening across three joint objectives: minimum cost of test materials, minimum total infections over the testing horizon, and minimum number of false negatives over the horizon. We demonstrate the application of this optimization tool to recommend screening protocols for K-12 school districts in the U.S. State of North Carolina. Our approach is scalable by population coverage and can be employed at the level of individual school districts or regional collections of districts, individual schools or collections of schools across a district, business sites, or nursing homes, among other congregate settings where individuals may be screened prior to gaining entry to the site. The algorithm can be solved two ways, generating either independent optimal protocols across individual testing locations, or a common protocol covering all locations in the collection of testing sites. Our findings can be used to inform policy decisions to guide the development of effective testing strategies for controlling the spread of COVID-19 or other pandemic diseases in a wide range of congregate settings across various geographic regions.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of testing protocols to screen for COVID-19: a multi-objective model.\",\"authors\":\"Hadi Moheb-Alizadeh, Donald P Warsing, Richard E Kouri, Sajjad Taghiyeh, Robert B Handfield\",\"doi\":\"10.1007/s10729-024-09688-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we develop a new multi-objective simulated annealing (MOSA) algorithm to generate optimal testing protocols for infectious diseases, using the COVID-19 pandemic as our context. A SEIR (susceptible-exposed-infected-recovered) epidemiological model is embedded as the computational platform for our MOSA algorithm to optimize testing protocols for screening across three joint objectives: minimum cost of test materials, minimum total infections over the testing horizon, and minimum number of false negatives over the horizon. We demonstrate the application of this optimization tool to recommend screening protocols for K-12 school districts in the U.S. State of North Carolina. Our approach is scalable by population coverage and can be employed at the level of individual school districts or regional collections of districts, individual schools or collections of schools across a district, business sites, or nursing homes, among other congregate settings where individuals may be screened prior to gaining entry to the site. The algorithm can be solved two ways, generating either independent optimal protocols across individual testing locations, or a common protocol covering all locations in the collection of testing sites. Our findings can be used to inform policy decisions to guide the development of effective testing strategies for controlling the spread of COVID-19 or other pandemic diseases in a wide range of congregate settings across various geographic regions.</p>\",\"PeriodicalId\":12903,\"journal\":{\"name\":\"Health Care Management Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Care Management Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10729-024-09688-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-024-09688-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

本文以 COVID-19 大流行为背景,开发了一种新的多目标模拟退火(MOSA)算法,用于生成传染病的最佳检测方案。我们将一个 SEIR(易感-暴露-感染-恢复)流行病学模型嵌入作为 MOSA 算法的计算平台,以优化筛查测试方案,实现三个共同目标:测试材料成本最低、测试期间感染总数最少和测试期间假阴性数量最少。我们展示了这一优化工具在美国北卡罗来纳州 K-12 学区筛查方案推荐中的应用。我们的方法可根据人口覆盖范围进行扩展,可用于单个学区或学区的区域集合、单个学校或跨学区的学校集合、商业场所或疗养院等个人在进入场所前可能需要接受筛查的聚集场所。该算法可通过两种方式求解,一种是在单个测试地点生成独立的最佳方案,另一种是在测试地点集合中生成涵盖所有地点的通用方案。我们的研究结果可为政策决策提供信息,指导制定有效的检测策略,以控制 COVID-19 或其他流行性疾病在不同地理区域的各种聚集环境中的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of testing protocols to screen for COVID-19: a multi-objective model.

In this paper we develop a new multi-objective simulated annealing (MOSA) algorithm to generate optimal testing protocols for infectious diseases, using the COVID-19 pandemic as our context. A SEIR (susceptible-exposed-infected-recovered) epidemiological model is embedded as the computational platform for our MOSA algorithm to optimize testing protocols for screening across three joint objectives: minimum cost of test materials, minimum total infections over the testing horizon, and minimum number of false negatives over the horizon. We demonstrate the application of this optimization tool to recommend screening protocols for K-12 school districts in the U.S. State of North Carolina. Our approach is scalable by population coverage and can be employed at the level of individual school districts or regional collections of districts, individual schools or collections of schools across a district, business sites, or nursing homes, among other congregate settings where individuals may be screened prior to gaining entry to the site. The algorithm can be solved two ways, generating either independent optimal protocols across individual testing locations, or a common protocol covering all locations in the collection of testing sites. Our findings can be used to inform policy decisions to guide the development of effective testing strategies for controlling the spread of COVID-19 or other pandemic diseases in a wide range of congregate settings across various geographic regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信