{"title":"用于表面增强拉曼散射传感的 MXene 结构调整基底。","authors":"Zhiwei Gao, Wei Lai","doi":"10.1002/cphc.202400604","DOIUrl":null,"url":null,"abstract":"<p><p>The distinctive structure of MXene offers exceptional electron transport properties, abundant surface chemistry, and robust mechanical attributes, thereby bestowing it with remarkable advantages and promising prospects in the realm of surface-enhanced Raman scattering (SERS). This review comprehensively outlines the evolution, synthesis methodologies, and characterization techniques employed for MXene-based SERS substrates. It delves into the intricacies of its SERS enhancement mechanism, substrate variants, and performance metrics, alongside showcasing its diverse applications spanning molecular detection, biosensing, and environmental monitoring. Furthermore, it endeavors to pinpoint the research bottlenecks and chart the future research trajectories for MXene-based SERS substrates.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400604"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structurally-Modulated Substrate of MXene for Surface-Enhanced Raman Scattering Sensing.\",\"authors\":\"Zhiwei Gao, Wei Lai\",\"doi\":\"10.1002/cphc.202400604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The distinctive structure of MXene offers exceptional electron transport properties, abundant surface chemistry, and robust mechanical attributes, thereby bestowing it with remarkable advantages and promising prospects in the realm of surface-enhanced Raman scattering (SERS). This review comprehensively outlines the evolution, synthesis methodologies, and characterization techniques employed for MXene-based SERS substrates. It delves into the intricacies of its SERS enhancement mechanism, substrate variants, and performance metrics, alongside showcasing its diverse applications spanning molecular detection, biosensing, and environmental monitoring. Furthermore, it endeavors to pinpoint the research bottlenecks and chart the future research trajectories for MXene-based SERS substrates.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400604\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400604\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400604","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Structurally-Modulated Substrate of MXene for Surface-Enhanced Raman Scattering Sensing.
The distinctive structure of MXene offers exceptional electron transport properties, abundant surface chemistry, and robust mechanical attributes, thereby bestowing it with remarkable advantages and promising prospects in the realm of surface-enhanced Raman scattering (SERS). This review comprehensively outlines the evolution, synthesis methodologies, and characterization techniques employed for MXene-based SERS substrates. It delves into the intricacies of its SERS enhancement mechanism, substrate variants, and performance metrics, alongside showcasing its diverse applications spanning molecular detection, biosensing, and environmental monitoring. Furthermore, it endeavors to pinpoint the research bottlenecks and chart the future research trajectories for MXene-based SERS substrates.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.