Dahye Yoon, Bo-Ram Choi, Hyoung-Geun Kim, Dae Young Lee
{"title":"通过多平台代谢组学和同时分析六种酚类化合物的方法确定不同地理产地 Zingiber officinale Roscoe 的代谢差异。","authors":"Dahye Yoon, Bo-Ram Choi, Hyoung-Geun Kim, Dae Young Lee","doi":"10.1111/1750-3841.17456","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>Ginger, which is the rhizome of <i>Zingiber officinale</i> Roscoe, is widely distributed and consumed. The taste and aroma of ginger differ depending on its geographical origin. To distinguish the origin of ginger, ginger extracts from Korea, Peru, and China were analyzed using ultra-performance liquid chromatography (UPLC) coupled to quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy for metabolomics. Korean ginger contained more 10-gingerol, and Peruvian ginger contained more 6-gingerol and 8-gingerol. Several amino acids negatively correlated with gingerols, suggesting that amino acids are related to the biosynthesis of gingerols. Sugars, which are the main energy source, positively correlated with gingerols. Organic acids and gingerols were also positively correlated, indicating that both organic acids and gingerols are used for adaptation to the environment surrounding the root. We confirmed the features of the primary and secondary metabolites by verifying the correlation between metabolites and differences in metabolites according to ginger origin. We additionally optimized a simultaneous UPLC analytical method of marker compounds for the simple and rapid quality control of ginger. This method exhibits excellent linearity, sensitivity, and reproducibility. Using metabolomics, differences in origin were observed, and a low-end equipment analysis method for quality control can be used in the ginger industry.</p>\n </section>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"89 11","pages":"7452-7463"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.17456","citationCount":"0","resultStr":"{\"title\":\"Metabolic differences in Zingiber officinale Roscoe by geographical origin determined via multiplatform metabolomics and method for simultaneous analysis of six phenolic compounds\",\"authors\":\"Dahye Yoon, Bo-Ram Choi, Hyoung-Geun Kim, Dae Young Lee\",\"doi\":\"10.1111/1750-3841.17456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n \\n <p>Ginger, which is the rhizome of <i>Zingiber officinale</i> Roscoe, is widely distributed and consumed. The taste and aroma of ginger differ depending on its geographical origin. To distinguish the origin of ginger, ginger extracts from Korea, Peru, and China were analyzed using ultra-performance liquid chromatography (UPLC) coupled to quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy for metabolomics. Korean ginger contained more 10-gingerol, and Peruvian ginger contained more 6-gingerol and 8-gingerol. Several amino acids negatively correlated with gingerols, suggesting that amino acids are related to the biosynthesis of gingerols. Sugars, which are the main energy source, positively correlated with gingerols. Organic acids and gingerols were also positively correlated, indicating that both organic acids and gingerols are used for adaptation to the environment surrounding the root. We confirmed the features of the primary and secondary metabolites by verifying the correlation between metabolites and differences in metabolites according to ginger origin. We additionally optimized a simultaneous UPLC analytical method of marker compounds for the simple and rapid quality control of ginger. This method exhibits excellent linearity, sensitivity, and reproducibility. Using metabolomics, differences in origin were observed, and a low-end equipment analysis method for quality control can be used in the ginger industry.</p>\\n </section>\\n </div>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"89 11\",\"pages\":\"7452-7463\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.17456\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17456\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17456","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Metabolic differences in Zingiber officinale Roscoe by geographical origin determined via multiplatform metabolomics and method for simultaneous analysis of six phenolic compounds
Ginger, which is the rhizome of Zingiber officinale Roscoe, is widely distributed and consumed. The taste and aroma of ginger differ depending on its geographical origin. To distinguish the origin of ginger, ginger extracts from Korea, Peru, and China were analyzed using ultra-performance liquid chromatography (UPLC) coupled to quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy for metabolomics. Korean ginger contained more 10-gingerol, and Peruvian ginger contained more 6-gingerol and 8-gingerol. Several amino acids negatively correlated with gingerols, suggesting that amino acids are related to the biosynthesis of gingerols. Sugars, which are the main energy source, positively correlated with gingerols. Organic acids and gingerols were also positively correlated, indicating that both organic acids and gingerols are used for adaptation to the environment surrounding the root. We confirmed the features of the primary and secondary metabolites by verifying the correlation between metabolites and differences in metabolites according to ginger origin. We additionally optimized a simultaneous UPLC analytical method of marker compounds for the simple and rapid quality control of ginger. This method exhibits excellent linearity, sensitivity, and reproducibility. Using metabolomics, differences in origin were observed, and a low-end equipment analysis method for quality control can be used in the ginger industry.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.