{"title":"聚合物如何在毛细管驱动的伸展流动中拉伸?","authors":"Vincenzo Calabrese, Amy Q. Shen, Simon J. Haward","doi":"10.1021/acs.macromol.4c01604","DOIUrl":null,"url":null,"abstract":"Measurements of the capillary-driven thinning and breakup of fluid filaments are widely used to extract the extensional rheological properties of complex materials. For viscoelastic fluids, such as polymer solutions, the longest relaxation time of the polymer is inferred from the decay rate of the filament diameter in the elastocapillary thinning regime. However, this determination relies on assumptions from constitutive models that are challenging to validate experimentally. By comparing the response of fluids in capillary thinning with that in a microfluidic extensional flow (in which the polymeric dynamics can be readily assessed), we show experimentally that these assumptions are likely only valid for highly extensible polymers but do not hold in general. For polymers with relatively low extensibility, such as polyelectrolytes in salt-free media, the conventional extrapolation of the longest relaxation time from capillary thinning techniques leads to a significant underestimation. We explain this discrepancy by considering the macromolecular dynamics occurring in the initial Newtonian-like thinning regime prior to the onset of elastocapillarity.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"26 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Do Polymers Stretch in Capillary-Driven Extensional Flows?\",\"authors\":\"Vincenzo Calabrese, Amy Q. Shen, Simon J. Haward\",\"doi\":\"10.1021/acs.macromol.4c01604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measurements of the capillary-driven thinning and breakup of fluid filaments are widely used to extract the extensional rheological properties of complex materials. For viscoelastic fluids, such as polymer solutions, the longest relaxation time of the polymer is inferred from the decay rate of the filament diameter in the elastocapillary thinning regime. However, this determination relies on assumptions from constitutive models that are challenging to validate experimentally. By comparing the response of fluids in capillary thinning with that in a microfluidic extensional flow (in which the polymeric dynamics can be readily assessed), we show experimentally that these assumptions are likely only valid for highly extensible polymers but do not hold in general. For polymers with relatively low extensibility, such as polyelectrolytes in salt-free media, the conventional extrapolation of the longest relaxation time from capillary thinning techniques leads to a significant underestimation. We explain this discrepancy by considering the macromolecular dynamics occurring in the initial Newtonian-like thinning regime prior to the onset of elastocapillarity.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01604\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01604","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
How Do Polymers Stretch in Capillary-Driven Extensional Flows?
Measurements of the capillary-driven thinning and breakup of fluid filaments are widely used to extract the extensional rheological properties of complex materials. For viscoelastic fluids, such as polymer solutions, the longest relaxation time of the polymer is inferred from the decay rate of the filament diameter in the elastocapillary thinning regime. However, this determination relies on assumptions from constitutive models that are challenging to validate experimentally. By comparing the response of fluids in capillary thinning with that in a microfluidic extensional flow (in which the polymeric dynamics can be readily assessed), we show experimentally that these assumptions are likely only valid for highly extensible polymers but do not hold in general. For polymers with relatively low extensibility, such as polyelectrolytes in salt-free media, the conventional extrapolation of the longest relaxation time from capillary thinning techniques leads to a significant underestimation. We explain this discrepancy by considering the macromolecular dynamics occurring in the initial Newtonian-like thinning regime prior to the onset of elastocapillarity.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.