{"title":"近中心对称域的伯克霍夫猜想","authors":"V. Kaloshin, C. E. Koudjinan, Ke Zhang","doi":"10.1007/s00039-024-00695-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove a perturbative version of a remarkable Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) result. They prove non perturbative Birkhoff conjecture for centrally-symmetric convex domains, namely, a centrally-symmetric convex domain with integrable billiard is ellipse. We combine techniques from Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) with a local result by Kaloshin–Sorrentino (Ann. Math. 188(1):315–380, 2018) and show that a domain close enough to a centrally symmetric one with integrable billiard is ellipse. To combine these results we derive a slight extension of Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) by proving that a notion of rational integrability is equivalent to the <i>C</i><sup>0</sup>-integrability condition used in their paper.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"23 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Birkhoff Conjecture for Nearly Centrally Symmetric Domains\",\"authors\":\"V. Kaloshin, C. E. Koudjinan, Ke Zhang\",\"doi\":\"10.1007/s00039-024-00695-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we prove a perturbative version of a remarkable Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) result. They prove non perturbative Birkhoff conjecture for centrally-symmetric convex domains, namely, a centrally-symmetric convex domain with integrable billiard is ellipse. We combine techniques from Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) with a local result by Kaloshin–Sorrentino (Ann. Math. 188(1):315–380, 2018) and show that a domain close enough to a centrally symmetric one with integrable billiard is ellipse. To combine these results we derive a slight extension of Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) by proving that a notion of rational integrability is equivalent to the <i>C</i><sup>0</sup>-integrability condition used in their paper.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00695-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00695-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Birkhoff Conjecture for Nearly Centrally Symmetric Domains
In this paper we prove a perturbative version of a remarkable Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) result. They prove non perturbative Birkhoff conjecture for centrally-symmetric convex domains, namely, a centrally-symmetric convex domain with integrable billiard is ellipse. We combine techniques from Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) with a local result by Kaloshin–Sorrentino (Ann. Math. 188(1):315–380, 2018) and show that a domain close enough to a centrally symmetric one with integrable billiard is ellipse. To combine these results we derive a slight extension of Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) by proving that a notion of rational integrability is equivalent to the C0-integrability condition used in their paper.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.