{"title":"从 HOLAPS 框架生成并评估能量和水通量:与极端炎热天气期间的卫星产品进行比较","authors":"Almudena García-García, Jian Peng","doi":"10.1016/j.rse.2024.114451","DOIUrl":null,"url":null,"abstract":"<div><div>Improving our understanding of the energy and water exchanges between the land surface and the lower atmosphere (i.e. land–atmosphere interactions), and how climate change may affect them, is crucial to predict changes in temperature and precipitation extremes. Observations of energy and water fluxes at the land surface are typically retrieved from the eddy covariance method, which presents limitations related to spatial and temporal gaps, and the non-closure of the energy and water balances. Meanwhile, soil moisture (SM) products derived from satellite data have been widely used at regional and global scales, but they are limited to capture only surface soil water content and variations. The combination of remote sensing (RS) data and modelling frameworks is called to be the solution to improve the spatial coverage and vertical resolution of land–atmosphere interactions data, ensuring the energy and water balance closure. Here, we explore the combination of remote sensing and meteorological data with a physical-based modelling framework, the High resOlution Land Atmosphere Parameters from Space (HOLAPS). We used HOLAPS to produce hourly consistent estimates of energy and water fluxes over Europe at 5 km resolution. HOLAPS and other satellite-based evapotranspiration and sensible heat flux products from the literature are evaluated against the water balance method and eddy covariance measurements. HOLAPS SM estimates together with other RS-modelling products are also evaluated against ground-based measurements at the surface and in the root zone. The evaluation of HOLAPS ET estimates show similar performance to the other products with Kling–Gupta efficiency (KGE) ¿ -0.41 in comparison with eddy covariance measurements from FLUXNET in all seasons but in boreal winter. The simulation of H is more uncertain than for ET with KGE values ranging from -2.5 to 0.8 along the products and stations at monthly scales. HOLAPS reaches slightly better results than the rest of ET and H products at daily scales in summer (KGE ¿ 0.3 for ET and KGE ¿ 0.0 for H) and during hot conditions (KGE ¿ 0.2 for ET and KGE ¿-0.2 for H), while the state-of-the-art products show KGE ¿ 0.1 for ET and KGE ¿ -0.41 for H in summer and KGE ¿ -0.1 for ET and KGE ¿ -0.6 for H during hot conditions. All products evaluated here yield a reasonable performance (KGE ¿-0.41 at most sites) in simulating SM at the surface and in the root zone. Our results expose the need for further investigating and improving product performances during extreme conditions. The good performance of HOLAPS together with its inherent advantages (RS data driven, high temporal and spatial resolution, spatial and temporal continuity, soil moisture at different depths and long-term consistent evapotranspiration and sensible heat flux estimates) support its use for agricultural and forest management activities as well as to study land–atmosphere interactions based on Earth Observations.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114451"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation and evaluation of energy and water fluxes from the HOLAPS framework: Comparison with satellite-based products during extreme hot weather\",\"authors\":\"Almudena García-García, Jian Peng\",\"doi\":\"10.1016/j.rse.2024.114451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving our understanding of the energy and water exchanges between the land surface and the lower atmosphere (i.e. land–atmosphere interactions), and how climate change may affect them, is crucial to predict changes in temperature and precipitation extremes. Observations of energy and water fluxes at the land surface are typically retrieved from the eddy covariance method, which presents limitations related to spatial and temporal gaps, and the non-closure of the energy and water balances. Meanwhile, soil moisture (SM) products derived from satellite data have been widely used at regional and global scales, but they are limited to capture only surface soil water content and variations. The combination of remote sensing (RS) data and modelling frameworks is called to be the solution to improve the spatial coverage and vertical resolution of land–atmosphere interactions data, ensuring the energy and water balance closure. Here, we explore the combination of remote sensing and meteorological data with a physical-based modelling framework, the High resOlution Land Atmosphere Parameters from Space (HOLAPS). We used HOLAPS to produce hourly consistent estimates of energy and water fluxes over Europe at 5 km resolution. HOLAPS and other satellite-based evapotranspiration and sensible heat flux products from the literature are evaluated against the water balance method and eddy covariance measurements. HOLAPS SM estimates together with other RS-modelling products are also evaluated against ground-based measurements at the surface and in the root zone. The evaluation of HOLAPS ET estimates show similar performance to the other products with Kling–Gupta efficiency (KGE) ¿ -0.41 in comparison with eddy covariance measurements from FLUXNET in all seasons but in boreal winter. The simulation of H is more uncertain than for ET with KGE values ranging from -2.5 to 0.8 along the products and stations at monthly scales. HOLAPS reaches slightly better results than the rest of ET and H products at daily scales in summer (KGE ¿ 0.3 for ET and KGE ¿ 0.0 for H) and during hot conditions (KGE ¿ 0.2 for ET and KGE ¿-0.2 for H), while the state-of-the-art products show KGE ¿ 0.1 for ET and KGE ¿ -0.41 for H in summer and KGE ¿ -0.1 for ET and KGE ¿ -0.6 for H during hot conditions. All products evaluated here yield a reasonable performance (KGE ¿-0.41 at most sites) in simulating SM at the surface and in the root zone. Our results expose the need for further investigating and improving product performances during extreme conditions. The good performance of HOLAPS together with its inherent advantages (RS data driven, high temporal and spatial resolution, spatial and temporal continuity, soil moisture at different depths and long-term consistent evapotranspiration and sensible heat flux estimates) support its use for agricultural and forest management activities as well as to study land–atmosphere interactions based on Earth Observations.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"315 \",\"pages\":\"Article 114451\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724004772\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004772","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Generation and evaluation of energy and water fluxes from the HOLAPS framework: Comparison with satellite-based products during extreme hot weather
Improving our understanding of the energy and water exchanges between the land surface and the lower atmosphere (i.e. land–atmosphere interactions), and how climate change may affect them, is crucial to predict changes in temperature and precipitation extremes. Observations of energy and water fluxes at the land surface are typically retrieved from the eddy covariance method, which presents limitations related to spatial and temporal gaps, and the non-closure of the energy and water balances. Meanwhile, soil moisture (SM) products derived from satellite data have been widely used at regional and global scales, but they are limited to capture only surface soil water content and variations. The combination of remote sensing (RS) data and modelling frameworks is called to be the solution to improve the spatial coverage and vertical resolution of land–atmosphere interactions data, ensuring the energy and water balance closure. Here, we explore the combination of remote sensing and meteorological data with a physical-based modelling framework, the High resOlution Land Atmosphere Parameters from Space (HOLAPS). We used HOLAPS to produce hourly consistent estimates of energy and water fluxes over Europe at 5 km resolution. HOLAPS and other satellite-based evapotranspiration and sensible heat flux products from the literature are evaluated against the water balance method and eddy covariance measurements. HOLAPS SM estimates together with other RS-modelling products are also evaluated against ground-based measurements at the surface and in the root zone. The evaluation of HOLAPS ET estimates show similar performance to the other products with Kling–Gupta efficiency (KGE) ¿ -0.41 in comparison with eddy covariance measurements from FLUXNET in all seasons but in boreal winter. The simulation of H is more uncertain than for ET with KGE values ranging from -2.5 to 0.8 along the products and stations at monthly scales. HOLAPS reaches slightly better results than the rest of ET and H products at daily scales in summer (KGE ¿ 0.3 for ET and KGE ¿ 0.0 for H) and during hot conditions (KGE ¿ 0.2 for ET and KGE ¿-0.2 for H), while the state-of-the-art products show KGE ¿ 0.1 for ET and KGE ¿ -0.41 for H in summer and KGE ¿ -0.1 for ET and KGE ¿ -0.6 for H during hot conditions. All products evaluated here yield a reasonable performance (KGE ¿-0.41 at most sites) in simulating SM at the surface and in the root zone. Our results expose the need for further investigating and improving product performances during extreme conditions. The good performance of HOLAPS together with its inherent advantages (RS data driven, high temporal and spatial resolution, spatial and temporal continuity, soil moisture at different depths and long-term consistent evapotranspiration and sensible heat flux estimates) support its use for agricultural and forest management activities as well as to study land–atmosphere interactions based on Earth Observations.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.