Wei Wang;Xinlin Wang;Yutong Liu;Yulin Ren;Maozhen Li;Asoke K. Nandi
{"title":"基于 T-RL 分区路径模型的 WSN 室内定位技术研究","authors":"Wei Wang;Xinlin Wang;Yutong Liu;Yulin Ren;Maozhen Li;Asoke K. Nandi","doi":"10.23919/JCIN.2024.10707101","DOIUrl":null,"url":null,"abstract":"To address the issues of unstable received signal strength indicator (RSSI) and low indoor positioning accuracy caused by walls and obstacles, the propagation conditions of the wireless communication system are categorized into two distinct environments: line-of-sight (LOS) and non-line-of-sight (NLOS). In the LOS environment, the traditional logarithmic path loss model is applied. For the NLOS environment, the impact of walls on signal transmission is considered, leading to the development of a multi-wall path loss model based on the T-RL method, with improvements made to the key parameter, the Fresnel coefficient R. The breakpoint value d = 2.3m in the partitioned model is determined, and the positional coordinates of the unknown nodes are calculated using the trilateration algorithm. Experimental results indicate that the T-RL based multi-wall model improves localization accuracy by 47% in NLOS environments compared to the traditional logarithmic path loss model. The average localization error using the T-RL partitioned path loss model is 0.702 1 m, representing a 55.9% improvement over the logarithmic path loss model and a 16.8% enhancement over the T-RL attenuation multi-wall model, thereby providing better environmental adaptability.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"9 3","pages":"219-232"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Indoor Positioning Technology of WSN based on T-RL Partition Path Model\",\"authors\":\"Wei Wang;Xinlin Wang;Yutong Liu;Yulin Ren;Maozhen Li;Asoke K. Nandi\",\"doi\":\"10.23919/JCIN.2024.10707101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the issues of unstable received signal strength indicator (RSSI) and low indoor positioning accuracy caused by walls and obstacles, the propagation conditions of the wireless communication system are categorized into two distinct environments: line-of-sight (LOS) and non-line-of-sight (NLOS). In the LOS environment, the traditional logarithmic path loss model is applied. For the NLOS environment, the impact of walls on signal transmission is considered, leading to the development of a multi-wall path loss model based on the T-RL method, with improvements made to the key parameter, the Fresnel coefficient R. The breakpoint value d = 2.3m in the partitioned model is determined, and the positional coordinates of the unknown nodes are calculated using the trilateration algorithm. Experimental results indicate that the T-RL based multi-wall model improves localization accuracy by 47% in NLOS environments compared to the traditional logarithmic path loss model. The average localization error using the T-RL partitioned path loss model is 0.702 1 m, representing a 55.9% improvement over the logarithmic path loss model and a 16.8% enhancement over the T-RL attenuation multi-wall model, thereby providing better environmental adaptability.\",\"PeriodicalId\":100766,\"journal\":{\"name\":\"Journal of Communications and Information Networks\",\"volume\":\"9 3\",\"pages\":\"219-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10707101/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10707101/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Indoor Positioning Technology of WSN based on T-RL Partition Path Model
To address the issues of unstable received signal strength indicator (RSSI) and low indoor positioning accuracy caused by walls and obstacles, the propagation conditions of the wireless communication system are categorized into two distinct environments: line-of-sight (LOS) and non-line-of-sight (NLOS). In the LOS environment, the traditional logarithmic path loss model is applied. For the NLOS environment, the impact of walls on signal transmission is considered, leading to the development of a multi-wall path loss model based on the T-RL method, with improvements made to the key parameter, the Fresnel coefficient R. The breakpoint value d = 2.3m in the partitioned model is determined, and the positional coordinates of the unknown nodes are calculated using the trilateration algorithm. Experimental results indicate that the T-RL based multi-wall model improves localization accuracy by 47% in NLOS environments compared to the traditional logarithmic path loss model. The average localization error using the T-RL partitioned path loss model is 0.702 1 m, representing a 55.9% improvement over the logarithmic path loss model and a 16.8% enhancement over the T-RL attenuation multi-wall model, thereby providing better environmental adaptability.