Luiz Fernando Silva Oliveira, Radhika S Khetani, Yu-Syuan Wu, Venkata Siva Dasuri, Amanda W Harrington, Oluwabunmi Olaloye, Jeffrey Goldsmith, David T Breault, Liza Konnikova, Shannan J Ho Sui, Amy E O'Connell
{"title":"对易发坏死性小肠结肠炎期间的产后小肠转录组进行编目。","authors":"Luiz Fernando Silva Oliveira, Radhika S Khetani, Yu-Syuan Wu, Venkata Siva Dasuri, Amanda W Harrington, Oluwabunmi Olaloye, Jeffrey Goldsmith, David T Breault, Liza Konnikova, Shannan J Ho Sui, Amy E O'Connell","doi":"10.1101/2024.09.25.612672","DOIUrl":null,"url":null,"abstract":"<p><p>In the first postnatal month, the developing mouse intestine shifts from an immature to a mature intestine that will sustain the organism throughout the lifespan. Here, we surveyed the mouse intestine in C57Bl/6 mice by RNA-Seq to evaluate the changes in gene expression over time from the day of birth through 1 month of age in both the duodenum and ileum. We analyzed gene expression for changes in gene families that correlated with the periods of NEC susceptibility or resistance. We highlight that increased expression of DNA processing genes and vacuolar structure genes, tissue development and morphogenesis genes, and cell migration genes all correlated with NEC susceptibility, while increases in immunity gene sets, intracellular transport genes, ATP production, and intracellular metabolism genes correlated with NEC resistance. Using trends identified in the RNA-Seq analyses, we further evaluated expression of cellular markers and epithelial regulators, immune cell markers, and adenosine metabolism components. We confirmed key changes with qRT-PCR and immunofluorescence. In addition, we compared some findings to humans using human intestinal biopsies and organoids. This dataset can serve as a reference for other groups considering the role of single molecules or molecular families in early intestinal and postnatal development.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463582/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cataloguing the postnatal small intestinal transcriptome during the first postnatal month.\",\"authors\":\"Luiz Fernando Silva Oliveira, Radhika S Khetani, Yu-Syuan Wu, Venkata Siva Dasuri, Amanda W Harrington, Oluwabunmi Olaloye, Jeffrey Goldsmith, David T Breault, Liza Konnikova, Shannan J Ho Sui, Amy E O'Connell\",\"doi\":\"10.1101/2024.09.25.612672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the first postnatal month, the developing mouse intestine shifts from an immature to a mature intestine that will sustain the organism throughout the lifespan. Here, we surveyed the mouse intestine in C57Bl/6 mice by RNA-Seq to evaluate the changes in gene expression over time from the day of birth through 1 month of age in both the duodenum and ileum. We analyzed gene expression for changes in gene families that correlated with the periods of NEC susceptibility or resistance. We highlight that increased expression of DNA processing genes and vacuolar structure genes, tissue development and morphogenesis genes, and cell migration genes all correlated with NEC susceptibility, while increases in immunity gene sets, intracellular transport genes, ATP production, and intracellular metabolism genes correlated with NEC resistance. Using trends identified in the RNA-Seq analyses, we further evaluated expression of cellular markers and epithelial regulators, immune cell markers, and adenosine metabolism components. We confirmed key changes with qRT-PCR and immunofluorescence. In addition, we compared some findings to humans using human intestinal biopsies and organoids. This dataset can serve as a reference for other groups considering the role of single molecules or molecular families in early intestinal and postnatal development.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463582/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.25.612672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.25.612672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cataloguing the postnatal small intestinal transcriptome during the first postnatal month.
In the first postnatal month, the developing mouse intestine shifts from an immature to a mature intestine that will sustain the organism throughout the lifespan. Here, we surveyed the mouse intestine in C57Bl/6 mice by RNA-Seq to evaluate the changes in gene expression over time from the day of birth through 1 month of age in both the duodenum and ileum. We analyzed gene expression for changes in gene families that correlated with the periods of NEC susceptibility or resistance. We highlight that increased expression of DNA processing genes and vacuolar structure genes, tissue development and morphogenesis genes, and cell migration genes all correlated with NEC susceptibility, while increases in immunity gene sets, intracellular transport genes, ATP production, and intracellular metabolism genes correlated with NEC resistance. Using trends identified in the RNA-Seq analyses, we further evaluated expression of cellular markers and epithelial regulators, immune cell markers, and adenosine metabolism components. We confirmed key changes with qRT-PCR and immunofluorescence. In addition, we compared some findings to humans using human intestinal biopsies and organoids. This dataset can serve as a reference for other groups considering the role of single molecules or molecular families in early intestinal and postnatal development.