Zhenyu Wu, Wei Wang, Lin Wang, Yacong Li, Fengmao Lv, Qing Xia, Chenglizhao Chen, Aimin Hao, Shuo Li
{"title":"像素就是你所需要的一切:用于显著物体检测的对抗性时空集合主动学习。","authors":"Zhenyu Wu, Wei Wang, Lin Wang, Yacong Li, Fengmao Lv, Qing Xia, Chenglizhao Chen, Aimin Hao, Shuo Li","doi":"10.1109/TPAMI.2024.3476683","DOIUrl":null,"url":null,"abstract":"<p><p>Although weakly-supervised techniques can reduce the labeling effort, it is unclear whether a saliency model trained with weakly-supervised data (e.g., point annotation) can achieve the equivalent performance of its fully-supervised version. This paper attempts to answer this unexplored question by proving a hypothesis: there is a point-labeled dataset where saliency models trained on it can achieve equivalent performance when trained on the densely annotated dataset. To prove this conjecture, we proposed a novel yet effective adversarial spatio-temporal ensemble active learning. Our contributions are four- fold: 1) Our proposed adversarial attack triggering uncertainty can conquer the overconfidence of existing active learning methods and accurately locate these uncertain pixels. 2) Our proposed spatio-temporal ensemble strategy not only achieves outstanding performance but significantly reduces the model's computational cost. 3) Our proposed relationship-aware diversity sampling can conquer oversampling while boosting model performance. 4) We provide theoretical proof for the existence of such a point-labeled dataset. Experimental results show that our approach can find such a point-labeled dataset, where a saliency model trained on it obtained 98%-99% performance of its fully-supervised version with only ten annotated points per image. The code is available at https://github.com/wuzhenyubuaa/ASTE-AL.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pixel is All You Need: Adversarial Spatio-Temporal Ensemble Active Learning for Salient Object Detection.\",\"authors\":\"Zhenyu Wu, Wei Wang, Lin Wang, Yacong Li, Fengmao Lv, Qing Xia, Chenglizhao Chen, Aimin Hao, Shuo Li\",\"doi\":\"10.1109/TPAMI.2024.3476683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although weakly-supervised techniques can reduce the labeling effort, it is unclear whether a saliency model trained with weakly-supervised data (e.g., point annotation) can achieve the equivalent performance of its fully-supervised version. This paper attempts to answer this unexplored question by proving a hypothesis: there is a point-labeled dataset where saliency models trained on it can achieve equivalent performance when trained on the densely annotated dataset. To prove this conjecture, we proposed a novel yet effective adversarial spatio-temporal ensemble active learning. Our contributions are four- fold: 1) Our proposed adversarial attack triggering uncertainty can conquer the overconfidence of existing active learning methods and accurately locate these uncertain pixels. 2) Our proposed spatio-temporal ensemble strategy not only achieves outstanding performance but significantly reduces the model's computational cost. 3) Our proposed relationship-aware diversity sampling can conquer oversampling while boosting model performance. 4) We provide theoretical proof for the existence of such a point-labeled dataset. Experimental results show that our approach can find such a point-labeled dataset, where a saliency model trained on it obtained 98%-99% performance of its fully-supervised version with only ten annotated points per image. The code is available at https://github.com/wuzhenyubuaa/ASTE-AL.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2024.3476683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3476683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pixel is All You Need: Adversarial Spatio-Temporal Ensemble Active Learning for Salient Object Detection.
Although weakly-supervised techniques can reduce the labeling effort, it is unclear whether a saliency model trained with weakly-supervised data (e.g., point annotation) can achieve the equivalent performance of its fully-supervised version. This paper attempts to answer this unexplored question by proving a hypothesis: there is a point-labeled dataset where saliency models trained on it can achieve equivalent performance when trained on the densely annotated dataset. To prove this conjecture, we proposed a novel yet effective adversarial spatio-temporal ensemble active learning. Our contributions are four- fold: 1) Our proposed adversarial attack triggering uncertainty can conquer the overconfidence of existing active learning methods and accurately locate these uncertain pixels. 2) Our proposed spatio-temporal ensemble strategy not only achieves outstanding performance but significantly reduces the model's computational cost. 3) Our proposed relationship-aware diversity sampling can conquer oversampling while boosting model performance. 4) We provide theoretical proof for the existence of such a point-labeled dataset. Experimental results show that our approach can find such a point-labeled dataset, where a saliency model trained on it obtained 98%-99% performance of its fully-supervised version with only ten annotated points per image. The code is available at https://github.com/wuzhenyubuaa/ASTE-AL.