Eura Nofshin, Siddharth Swaroop, Weiwei Pan, Susan Murphy, Finale Doshi-Velez
{"title":"在摩擦任务中对有限理性的人类代理进行强化学习干预。","authors":"Eura Nofshin, Siddharth Swaroop, Weiwei Pan, Susan Murphy, Finale Doshi-Velez","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many important behavior changes are <i>frictionful</i>; they require individuals to expend effort over a long period with little immediate gratification. Here, an artificial intelligence (AI) agent can provide personalized interventions to help individuals stick to their goals. In these settings, the AI agent must personalize <i>rapidly</i> (before the individual disengages) and <i>interpretably</i>, to help us understand the behavioral interventions. In this paper, we introduce Behavior Model Reinforcement Learning (BMRL), a framework in which an AI agent intervenes on the parameters of a Markov Decision Process (MDP) belonging to a <i>boundedly rational human agent</i>. Our formulation of the human decision-maker as a planning agent allows us to attribute undesirable human policies (ones that do not lead to the goal) to their maladapted MDP parameters, such as an extremely low discount factor. Furthermore, we propose a class of tractable human models that captures fundamental behaviors in frictionful tasks. Introducing a notion of <i>MDP equivalence</i> specific to BMRL, we theoretically and empirically show that AI planning with our human models can lead to helpful policies on a wide range of more complex, ground-truth humans.</p>","PeriodicalId":93357,"journal":{"name":"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems","volume":"2024 ","pages":"1482-1491"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460771/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning Interventions on Boundedly Rational Human Agents in Frictionful Tasks.\",\"authors\":\"Eura Nofshin, Siddharth Swaroop, Weiwei Pan, Susan Murphy, Finale Doshi-Velez\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many important behavior changes are <i>frictionful</i>; they require individuals to expend effort over a long period with little immediate gratification. Here, an artificial intelligence (AI) agent can provide personalized interventions to help individuals stick to their goals. In these settings, the AI agent must personalize <i>rapidly</i> (before the individual disengages) and <i>interpretably</i>, to help us understand the behavioral interventions. In this paper, we introduce Behavior Model Reinforcement Learning (BMRL), a framework in which an AI agent intervenes on the parameters of a Markov Decision Process (MDP) belonging to a <i>boundedly rational human agent</i>. Our formulation of the human decision-maker as a planning agent allows us to attribute undesirable human policies (ones that do not lead to the goal) to their maladapted MDP parameters, such as an extremely low discount factor. Furthermore, we propose a class of tractable human models that captures fundamental behaviors in frictionful tasks. Introducing a notion of <i>MDP equivalence</i> specific to BMRL, we theoretically and empirically show that AI planning with our human models can lead to helpful policies on a wide range of more complex, ground-truth humans.</p>\",\"PeriodicalId\":93357,\"journal\":{\"name\":\"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems\",\"volume\":\"2024 \",\"pages\":\"1482-1491\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460771/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Reinforcement Learning Interventions on Boundedly Rational Human Agents in Frictionful Tasks.
Many important behavior changes are frictionful; they require individuals to expend effort over a long period with little immediate gratification. Here, an artificial intelligence (AI) agent can provide personalized interventions to help individuals stick to their goals. In these settings, the AI agent must personalize rapidly (before the individual disengages) and interpretably, to help us understand the behavioral interventions. In this paper, we introduce Behavior Model Reinforcement Learning (BMRL), a framework in which an AI agent intervenes on the parameters of a Markov Decision Process (MDP) belonging to a boundedly rational human agent. Our formulation of the human decision-maker as a planning agent allows us to attribute undesirable human policies (ones that do not lead to the goal) to their maladapted MDP parameters, such as an extremely low discount factor. Furthermore, we propose a class of tractable human models that captures fundamental behaviors in frictionful tasks. Introducing a notion of MDP equivalence specific to BMRL, we theoretically and empirically show that AI planning with our human models can lead to helpful policies on a wide range of more complex, ground-truth humans.