Eman Merza , Stephen Pearson , Glen Lichtwark , Peter Malliaras
{"title":"跟腱游离体积在反复亚极限收缩时的区域变化。","authors":"Eman Merza , Stephen Pearson , Glen Lichtwark , Peter Malliaras","doi":"10.1016/j.foot.2024.102141","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>The Achilles tendon (AT) may become smaller in volume following acute bouts of heavy and sustained loading likely because of transient fluid exudation to the periphery and this could augment cellular mechanotransduction and tendon adaptation. Given the structure of the AT is distinct across its length, regional changes in the free AT volume may occur in response to loading. This study aimed to investigate whether the change in tendon volume in response to repeated submaximal loading is distinct across the free AT length.</div></div><div><h3>Methods</h3><div>Sixteen ATs of healthy males and females (age 24.4 ± 9.4 years, body mass 70.9 ± 16.1 kg, height 1.7 ± 0.1 m) were scanned at rest using freehand 3D ultrasound. Scanning was done before and immediately after submaximal (75 %) voluntary isometric plantarflexion contractions (8 s) involving four sets of ten repetitions. Regional volumetric changes were assessed across the free AT length by dividing the tendon into distal, mid, and proximal regions.</div></div><div><h3>Results</h3><div>Significant reduction in the free AT volume occurred across all tendon regions in response to the intervention, however, the mid- region exhibited the greatest reduction in volume compared to the proximal region (<em>P</em> = 0.025).</div></div><div><h3>Discussion</h3><div>The fact that volume reduction was greatest in the mid-region compared to the proximal region of the free AT may suggest greater tendon adaptation, via mechanotransduction pathways, in the mid-region and this may be important for tendon health and injury prevention.</div></div>","PeriodicalId":12349,"journal":{"name":"Foot","volume":"61 ","pages":"Article 102141"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional changes in the free Achilles tendon volume in response to repeated submaximal contractions\",\"authors\":\"Eman Merza , Stephen Pearson , Glen Lichtwark , Peter Malliaras\",\"doi\":\"10.1016/j.foot.2024.102141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div>The Achilles tendon (AT) may become smaller in volume following acute bouts of heavy and sustained loading likely because of transient fluid exudation to the periphery and this could augment cellular mechanotransduction and tendon adaptation. Given the structure of the AT is distinct across its length, regional changes in the free AT volume may occur in response to loading. This study aimed to investigate whether the change in tendon volume in response to repeated submaximal loading is distinct across the free AT length.</div></div><div><h3>Methods</h3><div>Sixteen ATs of healthy males and females (age 24.4 ± 9.4 years, body mass 70.9 ± 16.1 kg, height 1.7 ± 0.1 m) were scanned at rest using freehand 3D ultrasound. Scanning was done before and immediately after submaximal (75 %) voluntary isometric plantarflexion contractions (8 s) involving four sets of ten repetitions. Regional volumetric changes were assessed across the free AT length by dividing the tendon into distal, mid, and proximal regions.</div></div><div><h3>Results</h3><div>Significant reduction in the free AT volume occurred across all tendon regions in response to the intervention, however, the mid- region exhibited the greatest reduction in volume compared to the proximal region (<em>P</em> = 0.025).</div></div><div><h3>Discussion</h3><div>The fact that volume reduction was greatest in the mid-region compared to the proximal region of the free AT may suggest greater tendon adaptation, via mechanotransduction pathways, in the mid-region and this may be important for tendon health and injury prevention.</div></div>\",\"PeriodicalId\":12349,\"journal\":{\"name\":\"Foot\",\"volume\":\"61 \",\"pages\":\"Article 102141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foot\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958259224000749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foot","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958259224000749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
Regional changes in the free Achilles tendon volume in response to repeated submaximal contractions
Introduction
The Achilles tendon (AT) may become smaller in volume following acute bouts of heavy and sustained loading likely because of transient fluid exudation to the periphery and this could augment cellular mechanotransduction and tendon adaptation. Given the structure of the AT is distinct across its length, regional changes in the free AT volume may occur in response to loading. This study aimed to investigate whether the change in tendon volume in response to repeated submaximal loading is distinct across the free AT length.
Methods
Sixteen ATs of healthy males and females (age 24.4 ± 9.4 years, body mass 70.9 ± 16.1 kg, height 1.7 ± 0.1 m) were scanned at rest using freehand 3D ultrasound. Scanning was done before and immediately after submaximal (75 %) voluntary isometric plantarflexion contractions (8 s) involving four sets of ten repetitions. Regional volumetric changes were assessed across the free AT length by dividing the tendon into distal, mid, and proximal regions.
Results
Significant reduction in the free AT volume occurred across all tendon regions in response to the intervention, however, the mid- region exhibited the greatest reduction in volume compared to the proximal region (P = 0.025).
Discussion
The fact that volume reduction was greatest in the mid-region compared to the proximal region of the free AT may suggest greater tendon adaptation, via mechanotransduction pathways, in the mid-region and this may be important for tendon health and injury prevention.
期刊介绍:
The Foot is an international peer-reviewed journal covering all aspects of scientific approaches and medical and surgical treatment of the foot. The Foot aims to provide a multidisciplinary platform for all specialties involved in treating disorders of the foot. At present it is the only journal which provides this inter-disciplinary opportunity. Primary research papers cover a wide range of disorders of the foot and their treatment, including diabetes, vascular disease, neurological, dermatological and infectious conditions, sports injuries, biomechanics, bioengineering, orthoses and prostheses.