Russell C Hardie, Andrew T Trout, Jonathan R Dillman, Barath N Narayanan, Aki A Tanimoto
{"title":"肺结节计算机辅助检测系统在标准剂量和低剂量儿科 CT 扫描上的性能:个体内比较。","authors":"Russell C Hardie, Andrew T Trout, Jonathan R Dillman, Barath N Narayanan, Aki A Tanimoto","doi":"10.2214/AJR.24.31972","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> When applying lung-nodule computer-aided detection (CAD) systems for pediatric CT, performance may be degraded on low-dose scans due to increased image noise. <b>Objective:</b> To conduct an intraindividual comparison of the performance for lung nodule detection of two CAD systems trained using adult data between low-dose and standard-dose pediatric chest CT scans. <b>Methods:</b> This retrospective study included 73 patients (32 female, 41 male; mean age, 14.7 years; age range, 4-20 years) who underwent both clinical standard-dose and investigational low-dose chest CT examinations within the same encounter from November 30, 2018 to August 31, 2020 as part of an earlier prospective study. Fellowship-trained pediatric radiologists annotated lung nodules to serve as the reference standard. Both CT scans were processed using two publicly available lung-nodule CAD systems previously trained using adult data: FlyerScan and Medical Open Network for Artificial Intelligence (MONAI). The systems' sensitivities for nodules measuring 3-30 mm (n=247) were calculated when operating at a fixed frequency of two false-positives per scan. <b>Results:</b> FlyerScan exhibited detection sensitivities of 76.9% (190/247; 95% CI: 73.3-80.8%) on standard-dose scans and 66.8% (165/247; 95% CI: 62.6-71.5) on low-dose scans. MONAI exhibited detection sensitivities of 67.6% (167/247, 95% CI: 61.5-72.1) on standard-dose scans and 62.3% (154/247, 95% CI: 56.1-66.5%) on low-dose scans. The number of detected nodules for standard-dose versus low-dose scans for 3-mm nodules was 33 versus 24 (FlyerScan) and 16 versus 13 (MONAI), 4-mm nodules was 46 versus 42 (FlyerScan) and 39 versus 30 (MONAI), 5-mm nodules was 38 versus 33 (FlyerScan) and 32 versus 31 (MONAI), and 6-mm nodules was 27 versus 20 (FlyerScan) and 24 versus 24 (MONAI). For nodules measuring ≥7 mm, detection did not show a consistent pattern between standard-dose and low-dose scans for either system. <b>Conclusions:</b> Two lung-nodule CAD systems demonstrated decreased sensitivity on low-dose versus standard-dose pediatric CT scans performed in the same patients. The reduced detection at low dose was overall more pronounced for nodules measuring less than 5 mm. <b>Clinical Impact:</b> Caution is needed when using low-dose CT protocols in combination with CAD systems to help detect small lung nodules in pediatric patients.</p>","PeriodicalId":55529,"journal":{"name":"American Journal of Roentgenology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Lung-Nodule Computer-Aided Detection Systems on Standard-Dose and Low-Dose Pediatric CT Scans: An Intraindividual Comparison.\",\"authors\":\"Russell C Hardie, Andrew T Trout, Jonathan R Dillman, Barath N Narayanan, Aki A Tanimoto\",\"doi\":\"10.2214/AJR.24.31972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> When applying lung-nodule computer-aided detection (CAD) systems for pediatric CT, performance may be degraded on low-dose scans due to increased image noise. <b>Objective:</b> To conduct an intraindividual comparison of the performance for lung nodule detection of two CAD systems trained using adult data between low-dose and standard-dose pediatric chest CT scans. <b>Methods:</b> This retrospective study included 73 patients (32 female, 41 male; mean age, 14.7 years; age range, 4-20 years) who underwent both clinical standard-dose and investigational low-dose chest CT examinations within the same encounter from November 30, 2018 to August 31, 2020 as part of an earlier prospective study. Fellowship-trained pediatric radiologists annotated lung nodules to serve as the reference standard. Both CT scans were processed using two publicly available lung-nodule CAD systems previously trained using adult data: FlyerScan and Medical Open Network for Artificial Intelligence (MONAI). The systems' sensitivities for nodules measuring 3-30 mm (n=247) were calculated when operating at a fixed frequency of two false-positives per scan. <b>Results:</b> FlyerScan exhibited detection sensitivities of 76.9% (190/247; 95% CI: 73.3-80.8%) on standard-dose scans and 66.8% (165/247; 95% CI: 62.6-71.5) on low-dose scans. MONAI exhibited detection sensitivities of 67.6% (167/247, 95% CI: 61.5-72.1) on standard-dose scans and 62.3% (154/247, 95% CI: 56.1-66.5%) on low-dose scans. The number of detected nodules for standard-dose versus low-dose scans for 3-mm nodules was 33 versus 24 (FlyerScan) and 16 versus 13 (MONAI), 4-mm nodules was 46 versus 42 (FlyerScan) and 39 versus 30 (MONAI), 5-mm nodules was 38 versus 33 (FlyerScan) and 32 versus 31 (MONAI), and 6-mm nodules was 27 versus 20 (FlyerScan) and 24 versus 24 (MONAI). For nodules measuring ≥7 mm, detection did not show a consistent pattern between standard-dose and low-dose scans for either system. <b>Conclusions:</b> Two lung-nodule CAD systems demonstrated decreased sensitivity on low-dose versus standard-dose pediatric CT scans performed in the same patients. The reduced detection at low dose was overall more pronounced for nodules measuring less than 5 mm. <b>Clinical Impact:</b> Caution is needed when using low-dose CT protocols in combination with CAD systems to help detect small lung nodules in pediatric patients.</p>\",\"PeriodicalId\":55529,\"journal\":{\"name\":\"American Journal of Roentgenology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Roentgenology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2214/AJR.24.31972\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Roentgenology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2214/AJR.24.31972","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Performance of Lung-Nodule Computer-Aided Detection Systems on Standard-Dose and Low-Dose Pediatric CT Scans: An Intraindividual Comparison.
Background: When applying lung-nodule computer-aided detection (CAD) systems for pediatric CT, performance may be degraded on low-dose scans due to increased image noise. Objective: To conduct an intraindividual comparison of the performance for lung nodule detection of two CAD systems trained using adult data between low-dose and standard-dose pediatric chest CT scans. Methods: This retrospective study included 73 patients (32 female, 41 male; mean age, 14.7 years; age range, 4-20 years) who underwent both clinical standard-dose and investigational low-dose chest CT examinations within the same encounter from November 30, 2018 to August 31, 2020 as part of an earlier prospective study. Fellowship-trained pediatric radiologists annotated lung nodules to serve as the reference standard. Both CT scans were processed using two publicly available lung-nodule CAD systems previously trained using adult data: FlyerScan and Medical Open Network for Artificial Intelligence (MONAI). The systems' sensitivities for nodules measuring 3-30 mm (n=247) were calculated when operating at a fixed frequency of two false-positives per scan. Results: FlyerScan exhibited detection sensitivities of 76.9% (190/247; 95% CI: 73.3-80.8%) on standard-dose scans and 66.8% (165/247; 95% CI: 62.6-71.5) on low-dose scans. MONAI exhibited detection sensitivities of 67.6% (167/247, 95% CI: 61.5-72.1) on standard-dose scans and 62.3% (154/247, 95% CI: 56.1-66.5%) on low-dose scans. The number of detected nodules for standard-dose versus low-dose scans for 3-mm nodules was 33 versus 24 (FlyerScan) and 16 versus 13 (MONAI), 4-mm nodules was 46 versus 42 (FlyerScan) and 39 versus 30 (MONAI), 5-mm nodules was 38 versus 33 (FlyerScan) and 32 versus 31 (MONAI), and 6-mm nodules was 27 versus 20 (FlyerScan) and 24 versus 24 (MONAI). For nodules measuring ≥7 mm, detection did not show a consistent pattern between standard-dose and low-dose scans for either system. Conclusions: Two lung-nodule CAD systems demonstrated decreased sensitivity on low-dose versus standard-dose pediatric CT scans performed in the same patients. The reduced detection at low dose was overall more pronounced for nodules measuring less than 5 mm. Clinical Impact: Caution is needed when using low-dose CT protocols in combination with CAD systems to help detect small lung nodules in pediatric patients.
期刊介绍:
Founded in 1907, the monthly American Journal of Roentgenology (AJR) is the world’s longest continuously published general radiology journal. AJR is recognized as among the specialty’s leading peer-reviewed journals and has a worldwide circulation of close to 25,000. The journal publishes clinically-oriented articles across all radiology subspecialties, seeking relevance to radiologists’ daily practice. The journal publishes hundreds of articles annually with a diverse range of formats, including original research, reviews, clinical perspectives, editorials, and other short reports. The journal engages its audience through a spectrum of social media and digital communication activities.