Michele Garibbo;Casimir J. H. Ludwig;Nathan F. Lepora;Laurence Aitchison
{"title":"将基于人类错误的学习与现代深度 RL 算法联系起来。","authors":"Michele Garibbo;Casimir J. H. Ludwig;Nathan F. Lepora;Laurence Aitchison","doi":"10.1162/neco_a_01721","DOIUrl":null,"url":null,"abstract":"In human error–based learning, the size and direction of a scalar error (i.e., the “directed error”) are used to update future actions. Modern deep reinforcement learning (RL) methods perform a similar operation but in terms of scalar rewards. Despite this similarity, the relationship between action updates of deep RL and human error–based learning has yet to be investigated. Here, we systematically compare the three major families of deep RL algorithms to human error–based learning. We show that all three deep RL approaches are qualitatively different from human error–based learning, as assessed by a mirror-reversal perturbation experiment. To bridge this gap, we developed an alternative deep RL algorithm inspired by human error–based learning, model-based deterministic policy gradients (MB-DPG). We showed that MB-DPG captures human error–based learning under mirror-reversal and rotational perturbations and that MB-DPG learns faster than canonical model-free algorithms on complex arm-based reaching tasks, while being more robust to (forward) model misspecification than model-based RL.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"37 1","pages":"128-159"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relating Human Error–Based Learning to Modern Deep RL Algorithms\",\"authors\":\"Michele Garibbo;Casimir J. H. Ludwig;Nathan F. Lepora;Laurence Aitchison\",\"doi\":\"10.1162/neco_a_01721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In human error–based learning, the size and direction of a scalar error (i.e., the “directed error”) are used to update future actions. Modern deep reinforcement learning (RL) methods perform a similar operation but in terms of scalar rewards. Despite this similarity, the relationship between action updates of deep RL and human error–based learning has yet to be investigated. Here, we systematically compare the three major families of deep RL algorithms to human error–based learning. We show that all three deep RL approaches are qualitatively different from human error–based learning, as assessed by a mirror-reversal perturbation experiment. To bridge this gap, we developed an alternative deep RL algorithm inspired by human error–based learning, model-based deterministic policy gradients (MB-DPG). We showed that MB-DPG captures human error–based learning under mirror-reversal and rotational perturbations and that MB-DPG learns faster than canonical model-free algorithms on complex arm-based reaching tasks, while being more robust to (forward) model misspecification than model-based RL.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"37 1\",\"pages\":\"128-159\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10810338/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10810338/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Relating Human Error–Based Learning to Modern Deep RL Algorithms
In human error–based learning, the size and direction of a scalar error (i.e., the “directed error”) are used to update future actions. Modern deep reinforcement learning (RL) methods perform a similar operation but in terms of scalar rewards. Despite this similarity, the relationship between action updates of deep RL and human error–based learning has yet to be investigated. Here, we systematically compare the three major families of deep RL algorithms to human error–based learning. We show that all three deep RL approaches are qualitatively different from human error–based learning, as assessed by a mirror-reversal perturbation experiment. To bridge this gap, we developed an alternative deep RL algorithm inspired by human error–based learning, model-based deterministic policy gradients (MB-DPG). We showed that MB-DPG captures human error–based learning under mirror-reversal and rotational perturbations and that MB-DPG learns faster than canonical model-free algorithms on complex arm-based reaching tasks, while being more robust to (forward) model misspecification than model-based RL.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.