Xin Huang, Zhiqin Xu, Lingxiang Zhou, Ke Dong, Qingqing Liu, Jiating Li, Di Lei, Hanjun Liu, Xi Chen
{"title":"双侧小脑经颅直流电刺激对健康年轻人平衡控制的影响","authors":"Xin Huang, Zhiqin Xu, Lingxiang Zhou, Ke Dong, Qingqing Liu, Jiating Li, Di Lei, Hanjun Liu, Xi Chen","doi":"10.1007/s12311-024-01749-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebellar transcranial direct current stimulation (tDCS) has been shown to influence movement functions, but little is known about the specific effects of stimulation polarity on balance control. This study investigated the impact of bilateral cerebellar tDCS on balance functions as a function of stimulation polarity. In this randomized, controlled trial, thirty-nine healthy young adults were assigned to one of three groups: right anodal/left cathodal cerebellar stimulation (AC group), right cathodal/left anodal cerebellar stimulation (CA group), and a control sham group. Each participant underwent a daily 30-minute session of tDCS at 2 mA for one week. Balance function was assessed pre- and post-intervention and the data were analyzed using generalized estimating equations. The CA group exhibited a significant reduction in sway area when standing on the left leg and on both stable and unstable surfaces with eyes open, compared to both the AC and sham groups. However, there were no significant differences among the groups in terms of sway length, anteroposterior velocity, or mediolateral velocity. Our results indicate the polarity-dependent effects of bilateral cerebellar tDCS on balance functions, with enhanced stability observed only following cathodal tDCS over the right cerebellum paired with anodal tDCS over the left cerebellum. This polarity-specific modulation may have implications for developing cerebellar neuromodulation interventions for movement disorders.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"2468-2476"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Bilateral Cerebellar Transcranial Direct Current Stimulation on Balance Control in Healthy Young Adults.\",\"authors\":\"Xin Huang, Zhiqin Xu, Lingxiang Zhou, Ke Dong, Qingqing Liu, Jiating Li, Di Lei, Hanjun Liu, Xi Chen\",\"doi\":\"10.1007/s12311-024-01749-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebellar transcranial direct current stimulation (tDCS) has been shown to influence movement functions, but little is known about the specific effects of stimulation polarity on balance control. This study investigated the impact of bilateral cerebellar tDCS on balance functions as a function of stimulation polarity. In this randomized, controlled trial, thirty-nine healthy young adults were assigned to one of three groups: right anodal/left cathodal cerebellar stimulation (AC group), right cathodal/left anodal cerebellar stimulation (CA group), and a control sham group. Each participant underwent a daily 30-minute session of tDCS at 2 mA for one week. Balance function was assessed pre- and post-intervention and the data were analyzed using generalized estimating equations. The CA group exhibited a significant reduction in sway area when standing on the left leg and on both stable and unstable surfaces with eyes open, compared to both the AC and sham groups. However, there were no significant differences among the groups in terms of sway length, anteroposterior velocity, or mediolateral velocity. Our results indicate the polarity-dependent effects of bilateral cerebellar tDCS on balance functions, with enhanced stability observed only following cathodal tDCS over the right cerebellum paired with anodal tDCS over the left cerebellum. This polarity-specific modulation may have implications for developing cerebellar neuromodulation interventions for movement disorders.</p>\",\"PeriodicalId\":50706,\"journal\":{\"name\":\"Cerebellum\",\"volume\":\" \",\"pages\":\"2468-2476\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebellum\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12311-024-01749-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-024-01749-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The Impact of Bilateral Cerebellar Transcranial Direct Current Stimulation on Balance Control in Healthy Young Adults.
Cerebellar transcranial direct current stimulation (tDCS) has been shown to influence movement functions, but little is known about the specific effects of stimulation polarity on balance control. This study investigated the impact of bilateral cerebellar tDCS on balance functions as a function of stimulation polarity. In this randomized, controlled trial, thirty-nine healthy young adults were assigned to one of three groups: right anodal/left cathodal cerebellar stimulation (AC group), right cathodal/left anodal cerebellar stimulation (CA group), and a control sham group. Each participant underwent a daily 30-minute session of tDCS at 2 mA for one week. Balance function was assessed pre- and post-intervention and the data were analyzed using generalized estimating equations. The CA group exhibited a significant reduction in sway area when standing on the left leg and on both stable and unstable surfaces with eyes open, compared to both the AC and sham groups. However, there were no significant differences among the groups in terms of sway length, anteroposterior velocity, or mediolateral velocity. Our results indicate the polarity-dependent effects of bilateral cerebellar tDCS on balance functions, with enhanced stability observed only following cathodal tDCS over the right cerebellum paired with anodal tDCS over the left cerebellum. This polarity-specific modulation may have implications for developing cerebellar neuromodulation interventions for movement disorders.
期刊介绍:
Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction.
The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging.
The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.