{"title":"肝细胞衍生的Igκ通过稳定电子传递黄蛋白亚基α促进脂肪酸β氧化,从而促进肝癌的进展。","authors":"Jingjing Guo, Huining Gu, Sha Yin, Jiongming Yang, Qianqian Wang, Weiyan Xu, Yifan Wang, Shenghua Zhang, Xiaofeng Liu, Xunde Xian, Xiaoyan Qiu, Jing Huang","doi":"10.1186/s13046-024-03203-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lipid metabolism dysregulation is a key characteristic of hepatocellular carcinoma (HCC) onset and progression. Elevated expression of immunoglobulin (Ig), especially the Igκ free light chain with a unique Vκ4-1/Jκ3 rearrangement in cancer cells, is linked to increased malignancy and has been implicated in colon cancer tumorigenesis. However, the role of Igκ in HCC carcinogenesis remains unclear. The aim of this study was to elucidate the pivotal roles of hepatocyte-derived Igκ in HCC development.</p><p><strong>Methods: </strong>The rearrangement sequence and expression level of hepatocyte-derived Igκ in HCC cells were determined via RT-PCR, Sanger sequencing, immunohistochemistry, and western blot analysis. The function of Igκ in HCC tumorigenesis was assessed by silencing Igκ using siRNA or gRNA in various HCC cell lines. To assess the role of Igκ in HCC pathogenesis in vivo, a mouse model with hepatocyte-specific Igκ knockout and diethylnitrosamine (DEN) and carbon tetrachloride (CCL4)-induced HCC was utilized. The molecular mechanism by which Igκ affects HCC tumorigenesis was investigated through multiomics analyses, quantitative real-time PCR, immunoprecipitation, mass spectrometry, immunofluorescence, and metabolite detection.</p><p><strong>Results: </strong>We confirmed that Igκ, especially Vκ4-1/Jκ3-Igκ, is highly expressed in human HCC cells. Igκ depletion inhibited HCC cell proliferation and migration in vitro, and hepatocyte-specific Igκ deficiency ameliorated HCC progression in mice with DEN and CCL4-induced HCC in vivo. Mechanistically, Vκ4-1/Jκ3-Igκ interacts with electron transfer flavoprotein subunit α (ETFA), delaying its protein degradation. Loss of Igκ led to a decrease in the expression of mitochondrial respiratory chain complexes III and IV, resulting in aberrant fatty acid β-oxidation (FAO) and lipid accumulation, which in turn inhibited HCC cell proliferation and migration.</p><p><strong>Conclusion: </strong>Our findings indicate that the Igκ/ETFA axis deregulates fatty acid β-oxidation, contributing to HCC progression, which suggests that targeting fatty acid metabolism may be an effective HCC treatment strategy. The results of this study suggest that hepatocyte-derived Vκ4-1/Jκ3-Igκ may serve as a promising therapeutic target for HCC.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"280"},"PeriodicalIF":11.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hepatocyte-derived Igκ promotes HCC progression by stabilizing electron transfer flavoprotein subunit α to facilitate fatty acid β-oxidation.\",\"authors\":\"Jingjing Guo, Huining Gu, Sha Yin, Jiongming Yang, Qianqian Wang, Weiyan Xu, Yifan Wang, Shenghua Zhang, Xiaofeng Liu, Xunde Xian, Xiaoyan Qiu, Jing Huang\",\"doi\":\"10.1186/s13046-024-03203-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lipid metabolism dysregulation is a key characteristic of hepatocellular carcinoma (HCC) onset and progression. Elevated expression of immunoglobulin (Ig), especially the Igκ free light chain with a unique Vκ4-1/Jκ3 rearrangement in cancer cells, is linked to increased malignancy and has been implicated in colon cancer tumorigenesis. However, the role of Igκ in HCC carcinogenesis remains unclear. The aim of this study was to elucidate the pivotal roles of hepatocyte-derived Igκ in HCC development.</p><p><strong>Methods: </strong>The rearrangement sequence and expression level of hepatocyte-derived Igκ in HCC cells were determined via RT-PCR, Sanger sequencing, immunohistochemistry, and western blot analysis. The function of Igκ in HCC tumorigenesis was assessed by silencing Igκ using siRNA or gRNA in various HCC cell lines. To assess the role of Igκ in HCC pathogenesis in vivo, a mouse model with hepatocyte-specific Igκ knockout and diethylnitrosamine (DEN) and carbon tetrachloride (CCL4)-induced HCC was utilized. The molecular mechanism by which Igκ affects HCC tumorigenesis was investigated through multiomics analyses, quantitative real-time PCR, immunoprecipitation, mass spectrometry, immunofluorescence, and metabolite detection.</p><p><strong>Results: </strong>We confirmed that Igκ, especially Vκ4-1/Jκ3-Igκ, is highly expressed in human HCC cells. Igκ depletion inhibited HCC cell proliferation and migration in vitro, and hepatocyte-specific Igκ deficiency ameliorated HCC progression in mice with DEN and CCL4-induced HCC in vivo. Mechanistically, Vκ4-1/Jκ3-Igκ interacts with electron transfer flavoprotein subunit α (ETFA), delaying its protein degradation. Loss of Igκ led to a decrease in the expression of mitochondrial respiratory chain complexes III and IV, resulting in aberrant fatty acid β-oxidation (FAO) and lipid accumulation, which in turn inhibited HCC cell proliferation and migration.</p><p><strong>Conclusion: </strong>Our findings indicate that the Igκ/ETFA axis deregulates fatty acid β-oxidation, contributing to HCC progression, which suggests that targeting fatty acid metabolism may be an effective HCC treatment strategy. The results of this study suggest that hepatocyte-derived Vκ4-1/Jκ3-Igκ may serve as a promising therapeutic target for HCC.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"280\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03203-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03203-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Hepatocyte-derived Igκ promotes HCC progression by stabilizing electron transfer flavoprotein subunit α to facilitate fatty acid β-oxidation.
Background: Lipid metabolism dysregulation is a key characteristic of hepatocellular carcinoma (HCC) onset and progression. Elevated expression of immunoglobulin (Ig), especially the Igκ free light chain with a unique Vκ4-1/Jκ3 rearrangement in cancer cells, is linked to increased malignancy and has been implicated in colon cancer tumorigenesis. However, the role of Igκ in HCC carcinogenesis remains unclear. The aim of this study was to elucidate the pivotal roles of hepatocyte-derived Igκ in HCC development.
Methods: The rearrangement sequence and expression level of hepatocyte-derived Igκ in HCC cells were determined via RT-PCR, Sanger sequencing, immunohistochemistry, and western blot analysis. The function of Igκ in HCC tumorigenesis was assessed by silencing Igκ using siRNA or gRNA in various HCC cell lines. To assess the role of Igκ in HCC pathogenesis in vivo, a mouse model with hepatocyte-specific Igκ knockout and diethylnitrosamine (DEN) and carbon tetrachloride (CCL4)-induced HCC was utilized. The molecular mechanism by which Igκ affects HCC tumorigenesis was investigated through multiomics analyses, quantitative real-time PCR, immunoprecipitation, mass spectrometry, immunofluorescence, and metabolite detection.
Results: We confirmed that Igκ, especially Vκ4-1/Jκ3-Igκ, is highly expressed in human HCC cells. Igκ depletion inhibited HCC cell proliferation and migration in vitro, and hepatocyte-specific Igκ deficiency ameliorated HCC progression in mice with DEN and CCL4-induced HCC in vivo. Mechanistically, Vκ4-1/Jκ3-Igκ interacts with electron transfer flavoprotein subunit α (ETFA), delaying its protein degradation. Loss of Igκ led to a decrease in the expression of mitochondrial respiratory chain complexes III and IV, resulting in aberrant fatty acid β-oxidation (FAO) and lipid accumulation, which in turn inhibited HCC cell proliferation and migration.
Conclusion: Our findings indicate that the Igκ/ETFA axis deregulates fatty acid β-oxidation, contributing to HCC progression, which suggests that targeting fatty acid metabolism may be an effective HCC treatment strategy. The results of this study suggest that hepatocyte-derived Vκ4-1/Jκ3-Igκ may serve as a promising therapeutic target for HCC.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.