{"title":"通过可解释的机器学习方法对基因表达和靶向镜像进行综合分析,以解释口腔鳞状细胞癌和食管鳞状细胞癌之间的串扰。","authors":"Khushi Yadav, Yasha Hasija","doi":"10.1007/s11517-024-03210-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the bidirectional relation of esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma (OSCC), examining shared risk factors and underlying molecular mechanisms. By employing random forest (RF) classifier, enhanced with interpretable machine learning (IML) through SHapley Additive exPlanations (SHAP), we analyzed gene expression from two GEO datasets (GSE30784 and GSE44021). The GSE30784 dataset comprises 167 OSCC samples and 45 control group, whereas the GSE44021 dataset encompasses 113 ESCC samples and 113 control group. Our analysis led to identification of 20 key genes, such as XBP1, VGLL1, and RAD1, which are significantly associated with development of ESCC and OSCC. Further investigations were conducted using tools like NetworkAnalyst 3.0, Single Cell Portal, and miRNET 2.0, which highlighted complex interactions between these genes and specific miRNA targets including hsa-mir-124-3p and hsa-mir-1-3p. Our model achieved high precision in identifying genes linked to crucial processes like programmed cell death and cancer pathways, suggesting new avenues for diagnosis and treatment. This study confirms the bidirectional relationship between OSCC and ESCC, laying groundwork for targeted therapeutic approaches. This study helps to identify shared biological pathways and genetic factors of these conditions for designing personalized medicine strategies and to improve disease management.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated analysis of gene expressions and targeted mirnas for explaining crosstalk between oral and esophageal squamous cell carcinomas through an interpretable machine learning approach.\",\"authors\":\"Khushi Yadav, Yasha Hasija\",\"doi\":\"10.1007/s11517-024-03210-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the bidirectional relation of esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma (OSCC), examining shared risk factors and underlying molecular mechanisms. By employing random forest (RF) classifier, enhanced with interpretable machine learning (IML) through SHapley Additive exPlanations (SHAP), we analyzed gene expression from two GEO datasets (GSE30784 and GSE44021). The GSE30784 dataset comprises 167 OSCC samples and 45 control group, whereas the GSE44021 dataset encompasses 113 ESCC samples and 113 control group. Our analysis led to identification of 20 key genes, such as XBP1, VGLL1, and RAD1, which are significantly associated with development of ESCC and OSCC. Further investigations were conducted using tools like NetworkAnalyst 3.0, Single Cell Portal, and miRNET 2.0, which highlighted complex interactions between these genes and specific miRNA targets including hsa-mir-124-3p and hsa-mir-1-3p. Our model achieved high precision in identifying genes linked to crucial processes like programmed cell death and cancer pathways, suggesting new avenues for diagnosis and treatment. This study confirms the bidirectional relationship between OSCC and ESCC, laying groundwork for targeted therapeutic approaches. This study helps to identify shared biological pathways and genetic factors of these conditions for designing personalized medicine strategies and to improve disease management.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03210-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03210-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Integrated analysis of gene expressions and targeted mirnas for explaining crosstalk between oral and esophageal squamous cell carcinomas through an interpretable machine learning approach.
This study explores the bidirectional relation of esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma (OSCC), examining shared risk factors and underlying molecular mechanisms. By employing random forest (RF) classifier, enhanced with interpretable machine learning (IML) through SHapley Additive exPlanations (SHAP), we analyzed gene expression from two GEO datasets (GSE30784 and GSE44021). The GSE30784 dataset comprises 167 OSCC samples and 45 control group, whereas the GSE44021 dataset encompasses 113 ESCC samples and 113 control group. Our analysis led to identification of 20 key genes, such as XBP1, VGLL1, and RAD1, which are significantly associated with development of ESCC and OSCC. Further investigations were conducted using tools like NetworkAnalyst 3.0, Single Cell Portal, and miRNET 2.0, which highlighted complex interactions between these genes and specific miRNA targets including hsa-mir-124-3p and hsa-mir-1-3p. Our model achieved high precision in identifying genes linked to crucial processes like programmed cell death and cancer pathways, suggesting new avenues for diagnosis and treatment. This study confirms the bidirectional relationship between OSCC and ESCC, laying groundwork for targeted therapeutic approaches. This study helps to identify shared biological pathways and genetic factors of these conditions for designing personalized medicine strategies and to improve disease management.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).