通过可解释的机器学习方法对基因表达和靶向镜像进行综合分析,以解释口腔鳞状细胞癌和食管鳞状细胞癌之间的串扰。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Khushi Yadav, Yasha Hasija
{"title":"通过可解释的机器学习方法对基因表达和靶向镜像进行综合分析,以解释口腔鳞状细胞癌和食管鳞状细胞癌之间的串扰。","authors":"Khushi Yadav, Yasha Hasija","doi":"10.1007/s11517-024-03210-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the bidirectional relation of esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma (OSCC), examining shared risk factors and underlying molecular mechanisms. By employing random forest (RF) classifier, enhanced with interpretable machine learning (IML) through SHapley Additive exPlanations (SHAP), we analyzed gene expression from two GEO datasets (GSE30784 and GSE44021). The GSE30784 dataset comprises 167 OSCC samples and 45 control group, whereas the GSE44021 dataset encompasses 113 ESCC samples and 113 control group. Our analysis led to identification of 20 key genes, such as XBP1, VGLL1, and RAD1, which are significantly associated with development of ESCC and OSCC. Further investigations were conducted using tools like NetworkAnalyst 3.0, Single Cell Portal, and miRNET 2.0, which highlighted complex interactions between these genes and specific miRNA targets including hsa-mir-124-3p and hsa-mir-1-3p. Our model achieved high precision in identifying genes linked to crucial processes like programmed cell death and cancer pathways, suggesting new avenues for diagnosis and treatment. This study confirms the bidirectional relationship between OSCC and ESCC, laying groundwork for targeted therapeutic approaches. This study helps to identify shared biological pathways and genetic factors of these conditions for designing personalized medicine strategies and to improve disease management.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated analysis of gene expressions and targeted mirnas for explaining crosstalk between oral and esophageal squamous cell carcinomas through an interpretable machine learning approach.\",\"authors\":\"Khushi Yadav, Yasha Hasija\",\"doi\":\"10.1007/s11517-024-03210-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the bidirectional relation of esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma (OSCC), examining shared risk factors and underlying molecular mechanisms. By employing random forest (RF) classifier, enhanced with interpretable machine learning (IML) through SHapley Additive exPlanations (SHAP), we analyzed gene expression from two GEO datasets (GSE30784 and GSE44021). The GSE30784 dataset comprises 167 OSCC samples and 45 control group, whereas the GSE44021 dataset encompasses 113 ESCC samples and 113 control group. Our analysis led to identification of 20 key genes, such as XBP1, VGLL1, and RAD1, which are significantly associated with development of ESCC and OSCC. Further investigations were conducted using tools like NetworkAnalyst 3.0, Single Cell Portal, and miRNET 2.0, which highlighted complex interactions between these genes and specific miRNA targets including hsa-mir-124-3p and hsa-mir-1-3p. Our model achieved high precision in identifying genes linked to crucial processes like programmed cell death and cancer pathways, suggesting new avenues for diagnosis and treatment. This study confirms the bidirectional relationship between OSCC and ESCC, laying groundwork for targeted therapeutic approaches. This study helps to identify shared biological pathways and genetic factors of these conditions for designing personalized medicine strategies and to improve disease management.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03210-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03210-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了食管鳞状细胞癌(ESCC)和口腔鳞状细胞癌(OSCC)的双向关系,研究了共同的风险因素和潜在的分子机制。我们采用随机森林(RF)分类器,并通过SHAPLE Additive exPlanations(SHAP)增强可解释机器学习(IML),分析了两个GEO数据集(GSE30784和GSE44021)中的基因表达。GSE30784 数据集包括 167 个 OSCC 样本和 45 个对照组,而 GSE44021 数据集包括 113 个 ESCC 样本和 113 个对照组。通过分析,我们确定了 XBP1、VGLL1 和 RAD1 等 20 个关键基因,这些基因与 ESCC 和 OSCC 的发展显著相关。我们使用 NetworkAnalyst 3.0、Single Cell Portal 和 miRNET 2.0 等工具进行了进一步研究,结果发现这些基因与特定 miRNA 靶点(包括 hsa-mir-124-3p 和 hsa-mir-1-3p)之间存在复杂的相互作用。我们的模型能高精度识别与细胞程序性死亡和癌症通路等关键过程相关的基因,为诊断和治疗提供了新途径。这项研究证实了 OSCC 和 ESCC 之间的双向关系,为靶向治疗方法奠定了基础。这项研究有助于确定这些疾病的共同生物通路和遗传因素,从而设计个性化医疗策略,改善疾病管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated analysis of gene expressions and targeted mirnas for explaining crosstalk between oral and esophageal squamous cell carcinomas through an interpretable machine learning approach.

This study explores the bidirectional relation of esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma (OSCC), examining shared risk factors and underlying molecular mechanisms. By employing random forest (RF) classifier, enhanced with interpretable machine learning (IML) through SHapley Additive exPlanations (SHAP), we analyzed gene expression from two GEO datasets (GSE30784 and GSE44021). The GSE30784 dataset comprises 167 OSCC samples and 45 control group, whereas the GSE44021 dataset encompasses 113 ESCC samples and 113 control group. Our analysis led to identification of 20 key genes, such as XBP1, VGLL1, and RAD1, which are significantly associated with development of ESCC and OSCC. Further investigations were conducted using tools like NetworkAnalyst 3.0, Single Cell Portal, and miRNET 2.0, which highlighted complex interactions between these genes and specific miRNA targets including hsa-mir-124-3p and hsa-mir-1-3p. Our model achieved high precision in identifying genes linked to crucial processes like programmed cell death and cancer pathways, suggesting new avenues for diagnosis and treatment. This study confirms the bidirectional relationship between OSCC and ESCC, laying groundwork for targeted therapeutic approaches. This study helps to identify shared biological pathways and genetic factors of these conditions for designing personalized medicine strategies and to improve disease management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信