Francisco X Azpiazu-Flores, Ahmed Elfana, Chao-Chieh Yang, Dean Morton, Wei-Shao Lin
{"title":"人工老化和不同表面处理方案对使用 PolyJet 3D 打印技术制造单片多色全口义齿的光聚合物抗弯强度和表面硬度的影响。","authors":"Francisco X Azpiazu-Flores, Ahmed Elfana, Chao-Chieh Yang, Dean Morton, Wei-Shao Lin","doi":"10.1111/jopr.13963","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study evaluated the effect of thermocycling and three different surface finishing protocols on the flexural strength and surface hardness of a novel photopolymer intended for manufacturing monolithic polychromatic dental prostheses using PolyJet 3D printing.</p><p><strong>Materials and methods: </strong>A total of 90 specimens were manufactured using a photopolymer for 3D printing monolithic polychromatic dental prostheses using PolyJet technology (TrueDent; Stratasys USA). The specimens were divided into three groups (n = 30) according to the surface finishing protocol used: The control group Pumice+Moldent (Pumice), Pumice+Optiglaze (Optiglaze), and Polycril+Moldent (Polycril). Half of the specimens of each group (n = 15) were subjected to 5000 thermocycles (Thermocycling Unit OMC350TSX; Odeme Dental Research, Santa Catarina, Brazil), The other half was stored in distilled water at room temperature for 7 days before testing. The flexural strength of the specimens was assessed in a universal testing machine (MTS Sintech ReNew; MTS Systems Corp, Aiden Prairie, MN), and the Vicker's surface hardness was evaluated with a microhardness tester (Micro indentation Hardness Tester LM247AT; Leco Instruments Ltd, Ontario, Canada). The resulting data was analyzed using two-way ANOVA tests, and Fisher's protected least significant differences (α = 0.05) in a professional statistical analysis computer program (SAS v9.4, SAS Institute, Cary, NC) RESULTS: The two-way ANOVA tests suggested a statistically significant effect of thermocycling and the surface finishing protocol on the flexural strength (p = 0.01) but without significant interaction between both independent variables (p = 0.18). The post hoc analysis revealed no significant differences in the flexural strength between groups without thermocycling (p > 0.05). Thermocycling decreased the flexural strength of all groups (p < 0.05), and the Optiglaze group exhibited significantly higher flexural strength than the Polycril and Pumice groups after thermocycling (p < 0.01). Regarding the surface hardness, the two-way ANOVA indicated a significant 2-way interaction between thermocycling and the surface of the finishing protocol (p = 0.01). The post hoc analysis showed that the Optiglaze group had significantly higher hardness than the other groups, both before and after thermocycling (p < 0.01) After thermocycling, a significant decrease in surface hardness was observed in the Polycril and Pumice groups (p < 0.01).</p><p><strong>Conclusions: </strong>Surface finishing protocols and artificial aging can affect the surface hardness and flexural strength of the dental prostheses manufactured using the photopolymer studied. Careful polishing and surface finishing are required to ensure favorable clinical performance. Coating with a photopolymerizable glaze material seems to be a favorable surface treatment for monolithic polychromatic complete dentures fabricated using PolyJet 3D printing.</p>","PeriodicalId":49152,"journal":{"name":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of artificial aging and different surface finishing protocols on the flexural strength and surface hardness of a photopolymer for manufacturing monolithic polychromatic complete dentures using PolyJet 3D printing.\",\"authors\":\"Francisco X Azpiazu-Flores, Ahmed Elfana, Chao-Chieh Yang, Dean Morton, Wei-Shao Lin\",\"doi\":\"10.1111/jopr.13963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study evaluated the effect of thermocycling and three different surface finishing protocols on the flexural strength and surface hardness of a novel photopolymer intended for manufacturing monolithic polychromatic dental prostheses using PolyJet 3D printing.</p><p><strong>Materials and methods: </strong>A total of 90 specimens were manufactured using a photopolymer for 3D printing monolithic polychromatic dental prostheses using PolyJet technology (TrueDent; Stratasys USA). The specimens were divided into three groups (n = 30) according to the surface finishing protocol used: The control group Pumice+Moldent (Pumice), Pumice+Optiglaze (Optiglaze), and Polycril+Moldent (Polycril). Half of the specimens of each group (n = 15) were subjected to 5000 thermocycles (Thermocycling Unit OMC350TSX; Odeme Dental Research, Santa Catarina, Brazil), The other half was stored in distilled water at room temperature for 7 days before testing. The flexural strength of the specimens was assessed in a universal testing machine (MTS Sintech ReNew; MTS Systems Corp, Aiden Prairie, MN), and the Vicker's surface hardness was evaluated with a microhardness tester (Micro indentation Hardness Tester LM247AT; Leco Instruments Ltd, Ontario, Canada). The resulting data was analyzed using two-way ANOVA tests, and Fisher's protected least significant differences (α = 0.05) in a professional statistical analysis computer program (SAS v9.4, SAS Institute, Cary, NC) RESULTS: The two-way ANOVA tests suggested a statistically significant effect of thermocycling and the surface finishing protocol on the flexural strength (p = 0.01) but without significant interaction between both independent variables (p = 0.18). The post hoc analysis revealed no significant differences in the flexural strength between groups without thermocycling (p > 0.05). Thermocycling decreased the flexural strength of all groups (p < 0.05), and the Optiglaze group exhibited significantly higher flexural strength than the Polycril and Pumice groups after thermocycling (p < 0.01). Regarding the surface hardness, the two-way ANOVA indicated a significant 2-way interaction between thermocycling and the surface of the finishing protocol (p = 0.01). The post hoc analysis showed that the Optiglaze group had significantly higher hardness than the other groups, both before and after thermocycling (p < 0.01) After thermocycling, a significant decrease in surface hardness was observed in the Polycril and Pumice groups (p < 0.01).</p><p><strong>Conclusions: </strong>Surface finishing protocols and artificial aging can affect the surface hardness and flexural strength of the dental prostheses manufactured using the photopolymer studied. Careful polishing and surface finishing are required to ensure favorable clinical performance. Coating with a photopolymerizable glaze material seems to be a favorable surface treatment for monolithic polychromatic complete dentures fabricated using PolyJet 3D printing.</p>\",\"PeriodicalId\":49152,\"journal\":{\"name\":\"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jopr.13963\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jopr.13963","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Effect of artificial aging and different surface finishing protocols on the flexural strength and surface hardness of a photopolymer for manufacturing monolithic polychromatic complete dentures using PolyJet 3D printing.
Purpose: This study evaluated the effect of thermocycling and three different surface finishing protocols on the flexural strength and surface hardness of a novel photopolymer intended for manufacturing monolithic polychromatic dental prostheses using PolyJet 3D printing.
Materials and methods: A total of 90 specimens were manufactured using a photopolymer for 3D printing monolithic polychromatic dental prostheses using PolyJet technology (TrueDent; Stratasys USA). The specimens were divided into three groups (n = 30) according to the surface finishing protocol used: The control group Pumice+Moldent (Pumice), Pumice+Optiglaze (Optiglaze), and Polycril+Moldent (Polycril). Half of the specimens of each group (n = 15) were subjected to 5000 thermocycles (Thermocycling Unit OMC350TSX; Odeme Dental Research, Santa Catarina, Brazil), The other half was stored in distilled water at room temperature for 7 days before testing. The flexural strength of the specimens was assessed in a universal testing machine (MTS Sintech ReNew; MTS Systems Corp, Aiden Prairie, MN), and the Vicker's surface hardness was evaluated with a microhardness tester (Micro indentation Hardness Tester LM247AT; Leco Instruments Ltd, Ontario, Canada). The resulting data was analyzed using two-way ANOVA tests, and Fisher's protected least significant differences (α = 0.05) in a professional statistical analysis computer program (SAS v9.4, SAS Institute, Cary, NC) RESULTS: The two-way ANOVA tests suggested a statistically significant effect of thermocycling and the surface finishing protocol on the flexural strength (p = 0.01) but without significant interaction between both independent variables (p = 0.18). The post hoc analysis revealed no significant differences in the flexural strength between groups without thermocycling (p > 0.05). Thermocycling decreased the flexural strength of all groups (p < 0.05), and the Optiglaze group exhibited significantly higher flexural strength than the Polycril and Pumice groups after thermocycling (p < 0.01). Regarding the surface hardness, the two-way ANOVA indicated a significant 2-way interaction between thermocycling and the surface of the finishing protocol (p = 0.01). The post hoc analysis showed that the Optiglaze group had significantly higher hardness than the other groups, both before and after thermocycling (p < 0.01) After thermocycling, a significant decrease in surface hardness was observed in the Polycril and Pumice groups (p < 0.01).
Conclusions: Surface finishing protocols and artificial aging can affect the surface hardness and flexural strength of the dental prostheses manufactured using the photopolymer studied. Careful polishing and surface finishing are required to ensure favorable clinical performance. Coating with a photopolymerizable glaze material seems to be a favorable surface treatment for monolithic polychromatic complete dentures fabricated using PolyJet 3D printing.
期刊介绍:
The Journal of Prosthodontics promotes the advanced study and practice of prosthodontics, implant, esthetic, and reconstructive dentistry. It is the official journal of the American College of Prosthodontists, the American Dental Association-recognized voice of the Specialty of Prosthodontics. The journal publishes evidence-based original scientific articles presenting information that is relevant and useful to prosthodontists. Additionally, it publishes reports of innovative techniques, new instructional methodologies, and instructive clinical reports with an interdisciplinary flair. The journal is particularly focused on promoting the study and use of cutting-edge technology and positioning prosthodontists as the early-adopters of new technology in the dental community.