Ebenezer K Siabi, Akwasi Adu-Poku, Nathaniel Oppong Otchere, Edward A Awafo, Amos T Kabo-Bah, Nana S A Derkyi, Komlavi Akpoti, Geophrey K Anornu, Eunice Akyereko Adjei, Francis Kemausuor, Mashael Yazdanie
{"title":"共享社会经济路径下的洪水风险评估:以加纳大阿克拉地区的电力大宗供应点为例。","authors":"Ebenezer K Siabi, Akwasi Adu-Poku, Nathaniel Oppong Otchere, Edward A Awafo, Amos T Kabo-Bah, Nana S A Derkyi, Komlavi Akpoti, Geophrey K Anornu, Eunice Akyereko Adjei, Francis Kemausuor, Mashael Yazdanie","doi":"10.1007/s43832-024-00140-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates flood susceptibility and risk on Bulk Supply Points in the Greater Accra region (GAR) using a Frequency Ratio model based on 15 flood conditioning factors. The model explores the influence of natural, meteorological and anthropogenic factors on flooding occurrences under the Shared Socioeconomic Pathway (SSP) scenarios and assesses flood risks at Bulk Supply Points (BSPs). Flood susceptibility mapping was conducted for both current and future periods under various SSP scenarios. Results reveal that elevation, slope, soil type, distance from urban areas, and SPI are the most influential factors contributing to flooding susceptibility in the region. The current flood map, about 37% of the total area of GAR categorized under the moderate flood-susceptible zone category followed by about 30% categorized under the low flood-vulnerable zone. However, about 16% was categorized under the very high flood-vulnerable zone. The study projects increasing flood susceptibility under the SSP scenarios with intensification under SSP2 and SSP3 scenarios. For instance, the areas categorized as high and very high flood susceptibility zones are projected to expand to approximately 32% and 26% each by 2055 under SSP3. The study also assesses flood risks at Bulk Supply Points (BSPs), highlighting the escalating susceptibility of power assets to flooding under different scenarios. For instance, in the very high scenario, flooding is estimated to reach 640 h in 2045 and exceed 800 h in 2055-more than double the 2020 baseline. The analysis shows the bulk supply points face increasing flood susceptibility, with risks escalating most sharply under the severe climate change SSP3 and SSP5 scenarios. Over 75% of BSPs are expected to fall in the low- to medium-risk categories across SSPs while more than 50% of BSPs are within medium- to high-risk categories in all scenarios except SSP1, reflecting the impact of climate change. SSP3 and SSP5 stand out with over 60% of BSPs facing high or very high flooding risks by 2055. It indicates moderate resilience with proper adaptation but highlights potential disruptions in critical infrastructure, such as BSPs, during persistent flooding. The findings of the study are expected to inform Ghana's contributions towards addressing Sustainable Development Goals (SDGs) 7, 11 and 13 in Ghana.</p>","PeriodicalId":29971,"journal":{"name":"Discover Water","volume":"4 1","pages":"76"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458712/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flood risk assessment under the shared socioeconomic pathways: a case of electricity bulk supply points in Greater Accra, Ghana.\",\"authors\":\"Ebenezer K Siabi, Akwasi Adu-Poku, Nathaniel Oppong Otchere, Edward A Awafo, Amos T Kabo-Bah, Nana S A Derkyi, Komlavi Akpoti, Geophrey K Anornu, Eunice Akyereko Adjei, Francis Kemausuor, Mashael Yazdanie\",\"doi\":\"10.1007/s43832-024-00140-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates flood susceptibility and risk on Bulk Supply Points in the Greater Accra region (GAR) using a Frequency Ratio model based on 15 flood conditioning factors. The model explores the influence of natural, meteorological and anthropogenic factors on flooding occurrences under the Shared Socioeconomic Pathway (SSP) scenarios and assesses flood risks at Bulk Supply Points (BSPs). Flood susceptibility mapping was conducted for both current and future periods under various SSP scenarios. Results reveal that elevation, slope, soil type, distance from urban areas, and SPI are the most influential factors contributing to flooding susceptibility in the region. The current flood map, about 37% of the total area of GAR categorized under the moderate flood-susceptible zone category followed by about 30% categorized under the low flood-vulnerable zone. However, about 16% was categorized under the very high flood-vulnerable zone. The study projects increasing flood susceptibility under the SSP scenarios with intensification under SSP2 and SSP3 scenarios. For instance, the areas categorized as high and very high flood susceptibility zones are projected to expand to approximately 32% and 26% each by 2055 under SSP3. The study also assesses flood risks at Bulk Supply Points (BSPs), highlighting the escalating susceptibility of power assets to flooding under different scenarios. For instance, in the very high scenario, flooding is estimated to reach 640 h in 2045 and exceed 800 h in 2055-more than double the 2020 baseline. The analysis shows the bulk supply points face increasing flood susceptibility, with risks escalating most sharply under the severe climate change SSP3 and SSP5 scenarios. Over 75% of BSPs are expected to fall in the low- to medium-risk categories across SSPs while more than 50% of BSPs are within medium- to high-risk categories in all scenarios except SSP1, reflecting the impact of climate change. SSP3 and SSP5 stand out with over 60% of BSPs facing high or very high flooding risks by 2055. It indicates moderate resilience with proper adaptation but highlights potential disruptions in critical infrastructure, such as BSPs, during persistent flooding. The findings of the study are expected to inform Ghana's contributions towards addressing Sustainable Development Goals (SDGs) 7, 11 and 13 in Ghana.</p>\",\"PeriodicalId\":29971,\"journal\":{\"name\":\"Discover Water\",\"volume\":\"4 1\",\"pages\":\"76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458712/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43832-024-00140-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43832-024-00140-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Flood risk assessment under the shared socioeconomic pathways: a case of electricity bulk supply points in Greater Accra, Ghana.
This study evaluates flood susceptibility and risk on Bulk Supply Points in the Greater Accra region (GAR) using a Frequency Ratio model based on 15 flood conditioning factors. The model explores the influence of natural, meteorological and anthropogenic factors on flooding occurrences under the Shared Socioeconomic Pathway (SSP) scenarios and assesses flood risks at Bulk Supply Points (BSPs). Flood susceptibility mapping was conducted for both current and future periods under various SSP scenarios. Results reveal that elevation, slope, soil type, distance from urban areas, and SPI are the most influential factors contributing to flooding susceptibility in the region. The current flood map, about 37% of the total area of GAR categorized under the moderate flood-susceptible zone category followed by about 30% categorized under the low flood-vulnerable zone. However, about 16% was categorized under the very high flood-vulnerable zone. The study projects increasing flood susceptibility under the SSP scenarios with intensification under SSP2 and SSP3 scenarios. For instance, the areas categorized as high and very high flood susceptibility zones are projected to expand to approximately 32% and 26% each by 2055 under SSP3. The study also assesses flood risks at Bulk Supply Points (BSPs), highlighting the escalating susceptibility of power assets to flooding under different scenarios. For instance, in the very high scenario, flooding is estimated to reach 640 h in 2045 and exceed 800 h in 2055-more than double the 2020 baseline. The analysis shows the bulk supply points face increasing flood susceptibility, with risks escalating most sharply under the severe climate change SSP3 and SSP5 scenarios. Over 75% of BSPs are expected to fall in the low- to medium-risk categories across SSPs while more than 50% of BSPs are within medium- to high-risk categories in all scenarios except SSP1, reflecting the impact of climate change. SSP3 and SSP5 stand out with over 60% of BSPs facing high or very high flooding risks by 2055. It indicates moderate resilience with proper adaptation but highlights potential disruptions in critical infrastructure, such as BSPs, during persistent flooding. The findings of the study are expected to inform Ghana's contributions towards addressing Sustainable Development Goals (SDGs) 7, 11 and 13 in Ghana.
期刊介绍:
Discover Water is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is an open access, community-focussed journal publishing research from across all fields relevant to water research.
Discover Water is a broad, open access journal publishing research from across all fields relevant to the science and technology of water research and management. Discover Water covers not only research on water as a resource, for example for drinking, agriculture and sanitation, but also the impact of society on water, such as the effect of human activities on water availability and pollution. As such it looks at the overall role of water at a global level, including physical, chemical, biological, and ecological processes, and social, policy, and public health implications. It is also intended that articles published in Discover Water may help to support and accelerate United Nations Sustainable Development Goal 6: ‘Clean water and sanitation’.