Joanne Kim, Andrew B Lawson, Brian Neelon, Jeffrey E Korte, Jan M Eberth, Gerardo Chowell
{"title":"预测新发传染病高风险地区的新型贝叶斯时空监测指标。","authors":"Joanne Kim, Andrew B Lawson, Brian Neelon, Jeffrey E Korte, Jan M Eberth, Gerardo Chowell","doi":"10.1002/sim.10227","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of areas of high disease risk has been one of the top goals for infectious disease public health surveillance. Accurate prediction of these regions leads to effective resource allocation and faster intervention. This paper proposes a novel prediction surveillance metric based on a Bayesian spatio-temporal model for infectious disease outbreaks. Exceedance probability, which has been commonly used for cluster detection in statistical epidemiology, was extended to predict areas of high risk. The proposed metric consists of three components: the area's risk profile, temporal risk trend, and spatial neighborhood influence. We also introduce a weighting scheme to balance these three components, which accommodates the characteristics of the infectious disease outbreak, spatial properties, and disease trends. Thorough simulation studies were conducted to identify the optimal weighting scheme and evaluate the performance of the proposed prediction surveillance metric. Results indicate that the area's own risk and the neighborhood influence play an important role in making a highly sensitive metric, and the risk trend term is important for the specificity and accuracy of prediction. The proposed prediction metric was applied to the COVID-19 case data of South Carolina from March 12, 2020, and the subsequent 30 weeks of data.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"5300-5315"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Bayesian Spatio-Temporal Surveillance Metric to Predict Emerging Infectious Disease Areas of High Disease Risk.\",\"authors\":\"Joanne Kim, Andrew B Lawson, Brian Neelon, Jeffrey E Korte, Jan M Eberth, Gerardo Chowell\",\"doi\":\"10.1002/sim.10227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identification of areas of high disease risk has been one of the top goals for infectious disease public health surveillance. Accurate prediction of these regions leads to effective resource allocation and faster intervention. This paper proposes a novel prediction surveillance metric based on a Bayesian spatio-temporal model for infectious disease outbreaks. Exceedance probability, which has been commonly used for cluster detection in statistical epidemiology, was extended to predict areas of high risk. The proposed metric consists of three components: the area's risk profile, temporal risk trend, and spatial neighborhood influence. We also introduce a weighting scheme to balance these three components, which accommodates the characteristics of the infectious disease outbreak, spatial properties, and disease trends. Thorough simulation studies were conducted to identify the optimal weighting scheme and evaluate the performance of the proposed prediction surveillance metric. Results indicate that the area's own risk and the neighborhood influence play an important role in making a highly sensitive metric, and the risk trend term is important for the specificity and accuracy of prediction. The proposed prediction metric was applied to the COVID-19 case data of South Carolina from March 12, 2020, and the subsequent 30 weeks of data.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"5300-5315\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10227\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10227","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A Novel Bayesian Spatio-Temporal Surveillance Metric to Predict Emerging Infectious Disease Areas of High Disease Risk.
Identification of areas of high disease risk has been one of the top goals for infectious disease public health surveillance. Accurate prediction of these regions leads to effective resource allocation and faster intervention. This paper proposes a novel prediction surveillance metric based on a Bayesian spatio-temporal model for infectious disease outbreaks. Exceedance probability, which has been commonly used for cluster detection in statistical epidemiology, was extended to predict areas of high risk. The proposed metric consists of three components: the area's risk profile, temporal risk trend, and spatial neighborhood influence. We also introduce a weighting scheme to balance these three components, which accommodates the characteristics of the infectious disease outbreak, spatial properties, and disease trends. Thorough simulation studies were conducted to identify the optimal weighting scheme and evaluate the performance of the proposed prediction surveillance metric. Results indicate that the area's own risk and the neighborhood influence play an important role in making a highly sensitive metric, and the risk trend term is important for the specificity and accuracy of prediction. The proposed prediction metric was applied to the COVID-19 case data of South Carolina from March 12, 2020, and the subsequent 30 weeks of data.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.