从 RNAseq 输入中预测可转座元件 (TE) 插入以及 TE 对果蝇大脑转录组中 RNA 剪接和基因表达的影响。

IF 4.7 2区 生物学 Q1 GENETICS & HEREDITY
Md Fakhrul Azad, Tong Tong, Nelson C Lau
{"title":"从 RNAseq 输入中预测可转座元件 (TE) 插入以及 TE 对果蝇大脑转录组中 RNA 剪接和基因表达的影响。","authors":"Md Fakhrul Azad, Tong Tong, Nelson C Lau","doi":"10.1186/s13100-024-00330-z","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have suggested that Transposable Elements (TEs) residing in introns frequently splice into and alter primary gene-coding transcripts. To re-examine the exonization frequency of TEs into protein-coding gene transcripts, we re-analyzed a Drosophila neuron circadian rhythm RNAseq dataset and a deep long RNA fly midbrain RNAseq dataset using our Transposon Insertion and Depletion Analyzer (TIDAL) program. Our TIDAL results were able to predict several TE insertions from RNAseq data that were consistent with previous published studies. However, we also uncovered many discrepancies in TE-exonization calls, such as reads that mainly support intron retention of the TE and little support for chimeric mRNA spliced to the TE. We then deployed rigorous genomic DNA-PCR (gDNA-PCR) and RT-PCR procedures on TE-mRNA fusion candidates to see how many of bioinformatics predictions could be validated. By testing a w1118 strain from which the deeper long RNAseq data was derived and comparing to an OreR strain, only 9 of 23 TIDAL candidates (< 40%) could be validated as a novel TE insertion by gDNA-PCR, indicating that deeper study is needed when using RNAseq data as inputs into current TE-insertion prediction programs. Of these validated calls, our RT-PCR results only supported TE-intron retention. Lastly, in the Dscam2 and Bx genes of the w1118 strain that contained intronic TEs, gene expression was 23 times higher than the OreR genes lacking the TEs. This study's validation approach indicates that chimeric TE-mRNAs are infrequent and cautions that more optimization is required in bioinformatics programs to call TE insertions using RNAseq datasets.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462757/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transposable Element (TE) insertion predictions from RNAseq inputs and TE impact on RNA splicing and gene expression in Drosophila brain transcriptomes.\",\"authors\":\"Md Fakhrul Azad, Tong Tong, Nelson C Lau\",\"doi\":\"10.1186/s13100-024-00330-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have suggested that Transposable Elements (TEs) residing in introns frequently splice into and alter primary gene-coding transcripts. To re-examine the exonization frequency of TEs into protein-coding gene transcripts, we re-analyzed a Drosophila neuron circadian rhythm RNAseq dataset and a deep long RNA fly midbrain RNAseq dataset using our Transposon Insertion and Depletion Analyzer (TIDAL) program. Our TIDAL results were able to predict several TE insertions from RNAseq data that were consistent with previous published studies. However, we also uncovered many discrepancies in TE-exonization calls, such as reads that mainly support intron retention of the TE and little support for chimeric mRNA spliced to the TE. We then deployed rigorous genomic DNA-PCR (gDNA-PCR) and RT-PCR procedures on TE-mRNA fusion candidates to see how many of bioinformatics predictions could be validated. By testing a w1118 strain from which the deeper long RNAseq data was derived and comparing to an OreR strain, only 9 of 23 TIDAL candidates (< 40%) could be validated as a novel TE insertion by gDNA-PCR, indicating that deeper study is needed when using RNAseq data as inputs into current TE-insertion prediction programs. Of these validated calls, our RT-PCR results only supported TE-intron retention. Lastly, in the Dscam2 and Bx genes of the w1118 strain that contained intronic TEs, gene expression was 23 times higher than the OreR genes lacking the TEs. This study's validation approach indicates that chimeric TE-mRNAs are infrequent and cautions that more optimization is required in bioinformatics programs to call TE insertions using RNAseq datasets.</p>\",\"PeriodicalId\":18854,\"journal\":{\"name\":\"Mobile DNA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile DNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13100-024-00330-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-024-00330-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,内含子中的可转座元件(Transposable Elements,TEs)经常剪接到主基因编码转录本中并改变其编码。为了重新研究TE插入蛋白编码基因转录本的频率,我们使用转座子插入和删除分析器(TIDAL)程序重新分析了果蝇神经元昼夜节律RNAseq数据集和长RNA蝇中脑RNAseq数据集。我们的 TIDAL 结果能够从 RNAseq 数据中预测出几个 TE 插入,这与之前发表的研究结果一致。但是,我们也发现了许多 TE 缺失调用中的差异,如主要支持 TE 内含子保留的读数,以及很少支持与 TE 剪接的嵌合 mRNA。然后,我们对TE-mRNA融合候选基因采用了严格的基因组DNA-PCR(gDNA-PCR)和RT-PCR程序,以了解有多少生物信息学预测可以得到验证。通过测试w1118菌株(其深层长RNAseq数据来源于该菌株)并与OreR菌株进行比较,23个TIDAL候选者中只有9个(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transposable Element (TE) insertion predictions from RNAseq inputs and TE impact on RNA splicing and gene expression in Drosophila brain transcriptomes.

Recent studies have suggested that Transposable Elements (TEs) residing in introns frequently splice into and alter primary gene-coding transcripts. To re-examine the exonization frequency of TEs into protein-coding gene transcripts, we re-analyzed a Drosophila neuron circadian rhythm RNAseq dataset and a deep long RNA fly midbrain RNAseq dataset using our Transposon Insertion and Depletion Analyzer (TIDAL) program. Our TIDAL results were able to predict several TE insertions from RNAseq data that were consistent with previous published studies. However, we also uncovered many discrepancies in TE-exonization calls, such as reads that mainly support intron retention of the TE and little support for chimeric mRNA spliced to the TE. We then deployed rigorous genomic DNA-PCR (gDNA-PCR) and RT-PCR procedures on TE-mRNA fusion candidates to see how many of bioinformatics predictions could be validated. By testing a w1118 strain from which the deeper long RNAseq data was derived and comparing to an OreR strain, only 9 of 23 TIDAL candidates (< 40%) could be validated as a novel TE insertion by gDNA-PCR, indicating that deeper study is needed when using RNAseq data as inputs into current TE-insertion prediction programs. Of these validated calls, our RT-PCR results only supported TE-intron retention. Lastly, in the Dscam2 and Bx genes of the w1118 strain that contained intronic TEs, gene expression was 23 times higher than the OreR genes lacking the TEs. This study's validation approach indicates that chimeric TE-mRNAs are infrequent and cautions that more optimization is required in bioinformatics programs to call TE insertions using RNAseq datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mobile DNA
Mobile DNA GENETICS & HEREDITY-
CiteScore
8.20
自引率
6.10%
发文量
26
审稿时长
11 weeks
期刊介绍: Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信