Jing Bai, Wen-Bo Sun, Wei-Chao Zheng, Xu-Peng Wang, Yang Bai
{"title":"一氧化碳释放分子-3可通过抑制热凋亡和细胞凋亡改善创伤性脑损伤引起的心脏功能障碍。","authors":"Jing Bai, Wen-Bo Sun, Wei-Chao Zheng, Xu-Peng Wang, Yang Bai","doi":"10.1007/s11010-024-05130-w","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) frequently results in cardiac dysfunction and impacts the quality of survivors' life. It has been reported that carbon monoxide-releasing molecule-3 (CORM-3) administration immediately after hemorrhagic shock and resuscitation (HSR) ameliorated the HSR‑induced cardiac dysfunctions. The purpose of this study was to determine whether the application of CORM-3 on TBI exerted therapeutic effects against TBI-induced cardiac dysfunctions. Rats were randomly divided into four groups (n = 12) including Sham, TBI, TBI/CORM-3 and TBI/inactive CORM-3 (iCORM-3) groups. TBI was established by a weight-drop model. The rats in the TBI/CORM-3 group and TBI/iCORM-3 group were intravenously injected with CORM-3 and iCORM-3 (4 mg/kg) following TBI, respectively. The time of death in the rats that did not survive within 24 h was recorded. 24 h post-trauma, the cardiac function, pathological change, serum troponin T and creatine kinase-MB (CK-MB) levels, pyroptosis, apoptosis and expressions of TUNEL staining, Gasdermin D (GSDMD), IL-1β, IL-18, ratio Bax/Bcl-2 were assessed by echocardiography, hematoxylin-eosin staining, chemiluminescence, immunofluorescence, and western blot assays, respectively. TBI-treated rats exhibited dramatically decreased ejection fraction and aggravated myocardial injury, increased mortality rate, elevated levels of serum troponin T and CK-MB, promoted cardiac pyroptosis and apoptosis, and upregulated expressions of cleaved caspase-3, GSDMD N-terminal fragments, IL-1β, IL-18, and ratio of Bax/Bcl-2, whereas CORM-3 partially reversed these changes. CORM-3 ameliorated TBI-induced cardiac injury and dysfunction. This mechanism may be responsible for the inhibition of pyroptosis and apoptosis in cardiomyocyte.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon monoxide-releasing molecule-3 ameliorates traumatic brain injury-induced cardiac dysfunctions via inhibition of pyroptosis and apoptosis.\",\"authors\":\"Jing Bai, Wen-Bo Sun, Wei-Chao Zheng, Xu-Peng Wang, Yang Bai\",\"doi\":\"10.1007/s11010-024-05130-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic brain injury (TBI) frequently results in cardiac dysfunction and impacts the quality of survivors' life. It has been reported that carbon monoxide-releasing molecule-3 (CORM-3) administration immediately after hemorrhagic shock and resuscitation (HSR) ameliorated the HSR‑induced cardiac dysfunctions. The purpose of this study was to determine whether the application of CORM-3 on TBI exerted therapeutic effects against TBI-induced cardiac dysfunctions. Rats were randomly divided into four groups (n = 12) including Sham, TBI, TBI/CORM-3 and TBI/inactive CORM-3 (iCORM-3) groups. TBI was established by a weight-drop model. The rats in the TBI/CORM-3 group and TBI/iCORM-3 group were intravenously injected with CORM-3 and iCORM-3 (4 mg/kg) following TBI, respectively. The time of death in the rats that did not survive within 24 h was recorded. 24 h post-trauma, the cardiac function, pathological change, serum troponin T and creatine kinase-MB (CK-MB) levels, pyroptosis, apoptosis and expressions of TUNEL staining, Gasdermin D (GSDMD), IL-1β, IL-18, ratio Bax/Bcl-2 were assessed by echocardiography, hematoxylin-eosin staining, chemiluminescence, immunofluorescence, and western blot assays, respectively. TBI-treated rats exhibited dramatically decreased ejection fraction and aggravated myocardial injury, increased mortality rate, elevated levels of serum troponin T and CK-MB, promoted cardiac pyroptosis and apoptosis, and upregulated expressions of cleaved caspase-3, GSDMD N-terminal fragments, IL-1β, IL-18, and ratio of Bax/Bcl-2, whereas CORM-3 partially reversed these changes. CORM-3 ameliorated TBI-induced cardiac injury and dysfunction. This mechanism may be responsible for the inhibition of pyroptosis and apoptosis in cardiomyocyte.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-05130-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05130-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Carbon monoxide-releasing molecule-3 ameliorates traumatic brain injury-induced cardiac dysfunctions via inhibition of pyroptosis and apoptosis.
Traumatic brain injury (TBI) frequently results in cardiac dysfunction and impacts the quality of survivors' life. It has been reported that carbon monoxide-releasing molecule-3 (CORM-3) administration immediately after hemorrhagic shock and resuscitation (HSR) ameliorated the HSR‑induced cardiac dysfunctions. The purpose of this study was to determine whether the application of CORM-3 on TBI exerted therapeutic effects against TBI-induced cardiac dysfunctions. Rats were randomly divided into four groups (n = 12) including Sham, TBI, TBI/CORM-3 and TBI/inactive CORM-3 (iCORM-3) groups. TBI was established by a weight-drop model. The rats in the TBI/CORM-3 group and TBI/iCORM-3 group were intravenously injected with CORM-3 and iCORM-3 (4 mg/kg) following TBI, respectively. The time of death in the rats that did not survive within 24 h was recorded. 24 h post-trauma, the cardiac function, pathological change, serum troponin T and creatine kinase-MB (CK-MB) levels, pyroptosis, apoptosis and expressions of TUNEL staining, Gasdermin D (GSDMD), IL-1β, IL-18, ratio Bax/Bcl-2 were assessed by echocardiography, hematoxylin-eosin staining, chemiluminescence, immunofluorescence, and western blot assays, respectively. TBI-treated rats exhibited dramatically decreased ejection fraction and aggravated myocardial injury, increased mortality rate, elevated levels of serum troponin T and CK-MB, promoted cardiac pyroptosis and apoptosis, and upregulated expressions of cleaved caspase-3, GSDMD N-terminal fragments, IL-1β, IL-18, and ratio of Bax/Bcl-2, whereas CORM-3 partially reversed these changes. CORM-3 ameliorated TBI-induced cardiac injury and dysfunction. This mechanism may be responsible for the inhibition of pyroptosis and apoptosis in cardiomyocyte.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.