剖析Cullin4-E3连接酶相互作用组及其在甲型流感病毒感染中的重新布线。

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Guillaume Dugied, Thibaut Douche, Melanie Dos Santos, Quentin Giai Gianetto Q, Camille Cassonnet, Françoise Vuillier, Patricia Cassonnet, Yves Jacob, Sylvie van der Werf, Anastassia Komarova, Mariette Matondo, Marwah Karim, Caroline Demeret
{"title":"剖析Cullin4-E3连接酶相互作用组及其在甲型流感病毒感染中的重新布线。","authors":"Guillaume Dugied, Thibaut Douche, Melanie Dos Santos, Quentin Giai Gianetto Q, Camille Cassonnet, Françoise Vuillier, Patricia Cassonnet, Yves Jacob, Sylvie van der Werf, Anastassia Komarova, Mariette Matondo, Marwah Karim, Caroline Demeret","doi":"10.1016/j.mcpro.2024.100856","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the integrated regulation of cellular processes during viral infection is crucial for developing host-targeted approaches. We have previously reported that an optimal in vitro infection by influenza A virus (IAV) requires three components of Cullin 4-RING E3 ubiquitin ligases (CRL4) complexes, namely the DDB1 adaptor and two substrate recognition factors, DCAF11 and DCAF12L1, which mediate non-degradative poly-ubiquitination of the PB2 subunit of the viral polymerase. However, the impact of IAV infection on the CRL4 interactome remains elusive. Here, using Affinity Purification coupled with Mass Spectrometry (AP-MS) approaches, we identified cellular proteins interacting with these CRL4 components in IAV-infected and non-infected contexts. IAV infection induces significant modulations in protein interactions, resulting in a global loss of DDB1 and DCAF11 interactions, and an increase in DCAF12L1-associated proteins. The distinct rewiring of CRL4's associations upon infection impacted cellular proteins involved in protein folding, ubiquitination, translation, splicing, and stress responses. Using a split-nanoluciferase-based assay, we identified direct partners of CRL4 components and via siRNA-mediated silencing validated their role in IAV infection, representing potential substrates or regulators of CRL4 complexes. Our findings unravel the dynamic remodeling of the proteomic landscape of CRL4's E3 ubiquitin ligases during IAV infection, likely involved in shaping a cellular environment conducive to viral replication and offer potential for the exploration of future host-targeted antiviral therapeutic strategies.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100856"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Profiling Cullin4-E3 Ligases Interactomes and Their Rewiring in Influenza A Virus Infection.\",\"authors\":\"Guillaume Dugied, Thibaut Douche, Melanie Dos Santos, Quentin Giai Gianetto Q, Camille Cassonnet, Françoise Vuillier, Patricia Cassonnet, Yves Jacob, Sylvie van der Werf, Anastassia Komarova, Mariette Matondo, Marwah Karim, Caroline Demeret\",\"doi\":\"10.1016/j.mcpro.2024.100856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the integrated regulation of cellular processes during viral infection is crucial for developing host-targeted approaches. We have previously reported that an optimal in vitro infection by influenza A virus (IAV) requires three components of Cullin 4-RING E3 ubiquitin ligases (CRL4) complexes, namely the DDB1 adaptor and two substrate recognition factors, DCAF11 and DCAF12L1, which mediate non-degradative poly-ubiquitination of the PB2 subunit of the viral polymerase. However, the impact of IAV infection on the CRL4 interactome remains elusive. Here, using Affinity Purification coupled with Mass Spectrometry (AP-MS) approaches, we identified cellular proteins interacting with these CRL4 components in IAV-infected and non-infected contexts. IAV infection induces significant modulations in protein interactions, resulting in a global loss of DDB1 and DCAF11 interactions, and an increase in DCAF12L1-associated proteins. The distinct rewiring of CRL4's associations upon infection impacted cellular proteins involved in protein folding, ubiquitination, translation, splicing, and stress responses. Using a split-nanoluciferase-based assay, we identified direct partners of CRL4 components and via siRNA-mediated silencing validated their role in IAV infection, representing potential substrates or regulators of CRL4 complexes. Our findings unravel the dynamic remodeling of the proteomic landscape of CRL4's E3 ubiquitin ligases during IAV infection, likely involved in shaping a cellular environment conducive to viral replication and offer potential for the exploration of future host-targeted antiviral therapeutic strategies.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100856\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2024.100856\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100856","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

了解病毒感染过程中细胞过程的综合调控对于开发针对宿主的方法至关重要。我们以前曾报道,甲型流感(IAV)的最佳体外感染需要Cullin 4-RING E3泛素连接酶(CRL4)复合物的三个组分,即DDB1适配体和两个底物识别因子(SRF)DCAF11和DCAF12L1,它们介导病毒聚合酶PB2亚基的非降解性多泛素化。然而,IAV感染对CRL4相互作用组的影响仍然难以捉摸。在这里,我们利用亲和纯化与质谱联用(AP-MS)方法,鉴定了在感染 IAV 和未感染 IAV 的情况下与这些 CRL4 成分相互作用的细胞蛋白。IAV 感染会引起蛋白质相互作用的显著改变,导致 DDB1 和 DCAF11 相互作用的全面丧失,以及 DCAF12L1 相关蛋白质的增加。感染后,CRL4关联的独特重构影响了参与蛋白质折叠、泛素化、翻译、剪接和应激反应的细胞蛋白质。利用基于分体荧光素酶的检测方法,我们确定了 CRL4 成分的直接伙伴,并通过 siRNA 介导的沉默验证了它们在 IAV 感染中的作用,它们代表了 CRL4 复合物的潜在底物或调节因子。我们的研究结果揭示了在 IAV 感染过程中 CRL4 的 E3 泛素连接酶蛋白质组格局的动态重塑,这可能参与了有利于病毒复制的细胞环境的形成,并为探索未来宿主靶向抗病毒治疗策略提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Profiling Cullin4-E3 Ligases Interactomes and Their Rewiring in Influenza A Virus Infection.

Understanding the integrated regulation of cellular processes during viral infection is crucial for developing host-targeted approaches. We have previously reported that an optimal in vitro infection by influenza A virus (IAV) requires three components of Cullin 4-RING E3 ubiquitin ligases (CRL4) complexes, namely the DDB1 adaptor and two substrate recognition factors, DCAF11 and DCAF12L1, which mediate non-degradative poly-ubiquitination of the PB2 subunit of the viral polymerase. However, the impact of IAV infection on the CRL4 interactome remains elusive. Here, using Affinity Purification coupled with Mass Spectrometry (AP-MS) approaches, we identified cellular proteins interacting with these CRL4 components in IAV-infected and non-infected contexts. IAV infection induces significant modulations in protein interactions, resulting in a global loss of DDB1 and DCAF11 interactions, and an increase in DCAF12L1-associated proteins. The distinct rewiring of CRL4's associations upon infection impacted cellular proteins involved in protein folding, ubiquitination, translation, splicing, and stress responses. Using a split-nanoluciferase-based assay, we identified direct partners of CRL4 components and via siRNA-mediated silencing validated their role in IAV infection, representing potential substrates or regulators of CRL4 complexes. Our findings unravel the dynamic remodeling of the proteomic landscape of CRL4's E3 ubiquitin ligases during IAV infection, likely involved in shaping a cellular environment conducive to viral replication and offer potential for the exploration of future host-targeted antiviral therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信