氢/氘交换质谱法:基本原理、局限性和机遇。

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Lars Konermann, Pablo M Scrosati
{"title":"氢/氘交换质谱法:基本原理、局限性和机遇。","authors":"Lars Konermann, Pablo M Scrosati","doi":"10.1016/j.mcpro.2024.100853","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as \"residues X to Y become more protected after protein exposure to ligand Z\"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m<sub>0</sub>)/(m<sub>100</sub>-m<sub>0</sub>) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100853"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570944/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities.\",\"authors\":\"Lars Konermann, Pablo M Scrosati\",\"doi\":\"10.1016/j.mcpro.2024.100853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as \\\"residues X to Y become more protected after protein exposure to ligand Z\\\"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m<sub>0</sub>)/(m<sub>100</sub>-m<sub>0</sub>) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100853\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570944/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2024.100853\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100853","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

氢/氘交换质谱(HDX-MS)通过监测骨架酰胺脱氘的动力学来探测蛋白质的动态运动。动态区域表现出快速的 HDX,而刚性部分则受到更多保护。目前的数据读取侧重于定性比较观察(如 "蛋白质暴露于配体 Z 后,X 至 Y 残基受到更多保护")。目前,还无法以原子论的方式解码 HDX 保护模式。换句话说,无法揭示特定条件下蛋白质运动的确切范围,这就为推测解释留下了空间。酰胺反向交换是一个未得到充分重视的问题,因为广泛使用的(m-m0)/(m100-m0)校正方法会扭曲 HDX 动力曲线。未来的数据分析策略需要从根本上更好地理解 HDX 事件,超越经典的林德斯特伦-朗(Linderstrøm-Lang)模型。结合提供更高的空间分辨率和抑制反向交换的实验,应该有可能发现蛋白质在特定条件下表现出的确切运动范围。这些进展将大大提高人们对蛋白质在健康和疾病中行为的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities.

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信