Laísa Quadros Barsé, Agnes Ulfig, Marharyta Varatnitskaya, Melissa Vázquez-Hernández, Jihyun Yoo, Astrid M Imann, Natalie Lupilov, Marina Fischer, Katja Becker, Julia E Bandow, Lars I Leichert
{"title":"比较金(I)化合物 auranofin 在革兰氏阳性菌和革兰氏阴性菌中的抗菌作用机制。","authors":"Laísa Quadros Barsé, Agnes Ulfig, Marharyta Varatnitskaya, Melissa Vázquez-Hernández, Jihyun Yoo, Astrid M Imann, Natalie Lupilov, Marina Fischer, Katja Becker, Julia E Bandow, Lars I Leichert","doi":"10.1128/spectrum.00138-24","DOIUrl":null,"url":null,"abstract":"<p><p>While highly effective at killing Gram-positive bacteria, auranofin lacks significant activity against Gram-negative species for reasons that largely remain unclear. Here, we aimed to elucidate the molecular mechanisms underlying the low susceptibility of the Gram-negative model organism <i>Escherichia coli</i> to auranofin when compared to the Gram-positive model organism <i>Bacillus subtilis</i>. The proteome response of <i>E. coli</i> exposed to auranofin suggests a combination of inactivation of thiol-containing enzymes and the induction of systemic oxidative stress. Susceptibility tests in <i>E. coli</i> mutants lacking proteins upregulated upon auranofin treatment suggested that none of them are directly involved in <i>E. coli</i>'s high tolerance to auranofin. <i>E. coli</i> cells lacking the efflux pump component TolC were more sensitive to auranofin treatment, but not to an extent that would fully explain the observed difference in susceptibility of Gram-positive and Gram-negative organisms. We thus tested whether <i>E. coli</i>'s thioredoxin reductase (TrxB) is inherently less sensitive to auranofin than TrxB from <i>B. subtilis</i>, which was not the case. However, <i>E. coli</i> strains lacking the low-molecular-weight thiol glutathione, but not glutathione reductase, showed a high susceptibility to auranofin. Bacterial cells expressing the genetically encoded redox probe roGFP2 allowed us to observe the oxidation of cellular protein thiols <i>in situ</i>. Based on our findings, we hypothesize that auranofin leads to a global disturbance in the cellular thiol redox homeostasis in bacteria, but Gram-negative bacteria are inherently more resistant due to the presence of drug export systems and high cellular concentrations of glutathione.IMPORTANCEAuranofin is an FDA-approved drug for the treatment of rheumatoid arthritis. However, it has also high antibacterial activity, in particular against Gram-positive organisms. In the current antibiotics crisis, this would make it an ideal candidate for drug repurposing. However, its much lower activity against Gram-negative organisms prevents its broad-spectrum application. Here we show that, on the level of the presumed target, there is no difference in susceptibility between Gram-negative and Gram-positive species: thioredoxin reductases from both <i>Escherichia coli</i> and <i>Bacillus subtilis</i> are equally inhibited by auranofin. In both species, auranofin treatment leads to oxidative protein modification on a systemic level, as monitored by proteomics and the genetically encoded redox probe roGFP2. The single largest contributor to <i>E. coli</i>'s relative resistance to auranofin seems to be the low-molecular-weight thiol glutathione, which is absent in <i>B. subtilis</i> and other Gram-positive species.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537011/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of the mechanism of antimicrobial action of the gold(I) compound auranofin in Gram-positive and Gram-negative bacteria.\",\"authors\":\"Laísa Quadros Barsé, Agnes Ulfig, Marharyta Varatnitskaya, Melissa Vázquez-Hernández, Jihyun Yoo, Astrid M Imann, Natalie Lupilov, Marina Fischer, Katja Becker, Julia E Bandow, Lars I Leichert\",\"doi\":\"10.1128/spectrum.00138-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While highly effective at killing Gram-positive bacteria, auranofin lacks significant activity against Gram-negative species for reasons that largely remain unclear. Here, we aimed to elucidate the molecular mechanisms underlying the low susceptibility of the Gram-negative model organism <i>Escherichia coli</i> to auranofin when compared to the Gram-positive model organism <i>Bacillus subtilis</i>. The proteome response of <i>E. coli</i> exposed to auranofin suggests a combination of inactivation of thiol-containing enzymes and the induction of systemic oxidative stress. Susceptibility tests in <i>E. coli</i> mutants lacking proteins upregulated upon auranofin treatment suggested that none of them are directly involved in <i>E. coli</i>'s high tolerance to auranofin. <i>E. coli</i> cells lacking the efflux pump component TolC were more sensitive to auranofin treatment, but not to an extent that would fully explain the observed difference in susceptibility of Gram-positive and Gram-negative organisms. We thus tested whether <i>E. coli</i>'s thioredoxin reductase (TrxB) is inherently less sensitive to auranofin than TrxB from <i>B. subtilis</i>, which was not the case. However, <i>E. coli</i> strains lacking the low-molecular-weight thiol glutathione, but not glutathione reductase, showed a high susceptibility to auranofin. Bacterial cells expressing the genetically encoded redox probe roGFP2 allowed us to observe the oxidation of cellular protein thiols <i>in situ</i>. Based on our findings, we hypothesize that auranofin leads to a global disturbance in the cellular thiol redox homeostasis in bacteria, but Gram-negative bacteria are inherently more resistant due to the presence of drug export systems and high cellular concentrations of glutathione.IMPORTANCEAuranofin is an FDA-approved drug for the treatment of rheumatoid arthritis. However, it has also high antibacterial activity, in particular against Gram-positive organisms. In the current antibiotics crisis, this would make it an ideal candidate for drug repurposing. However, its much lower activity against Gram-negative organisms prevents its broad-spectrum application. Here we show that, on the level of the presumed target, there is no difference in susceptibility between Gram-negative and Gram-positive species: thioredoxin reductases from both <i>Escherichia coli</i> and <i>Bacillus subtilis</i> are equally inhibited by auranofin. In both species, auranofin treatment leads to oxidative protein modification on a systemic level, as monitored by proteomics and the genetically encoded redox probe roGFP2. The single largest contributor to <i>E. coli</i>'s relative resistance to auranofin seems to be the low-molecular-weight thiol glutathione, which is absent in <i>B. subtilis</i> and other Gram-positive species.</p>\",\"PeriodicalId\":18670,\"journal\":{\"name\":\"Microbiology spectrum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537011/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology spectrum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/spectrum.00138-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.00138-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Comparison of the mechanism of antimicrobial action of the gold(I) compound auranofin in Gram-positive and Gram-negative bacteria.
While highly effective at killing Gram-positive bacteria, auranofin lacks significant activity against Gram-negative species for reasons that largely remain unclear. Here, we aimed to elucidate the molecular mechanisms underlying the low susceptibility of the Gram-negative model organism Escherichia coli to auranofin when compared to the Gram-positive model organism Bacillus subtilis. The proteome response of E. coli exposed to auranofin suggests a combination of inactivation of thiol-containing enzymes and the induction of systemic oxidative stress. Susceptibility tests in E. coli mutants lacking proteins upregulated upon auranofin treatment suggested that none of them are directly involved in E. coli's high tolerance to auranofin. E. coli cells lacking the efflux pump component TolC were more sensitive to auranofin treatment, but not to an extent that would fully explain the observed difference in susceptibility of Gram-positive and Gram-negative organisms. We thus tested whether E. coli's thioredoxin reductase (TrxB) is inherently less sensitive to auranofin than TrxB from B. subtilis, which was not the case. However, E. coli strains lacking the low-molecular-weight thiol glutathione, but not glutathione reductase, showed a high susceptibility to auranofin. Bacterial cells expressing the genetically encoded redox probe roGFP2 allowed us to observe the oxidation of cellular protein thiols in situ. Based on our findings, we hypothesize that auranofin leads to a global disturbance in the cellular thiol redox homeostasis in bacteria, but Gram-negative bacteria are inherently more resistant due to the presence of drug export systems and high cellular concentrations of glutathione.IMPORTANCEAuranofin is an FDA-approved drug for the treatment of rheumatoid arthritis. However, it has also high antibacterial activity, in particular against Gram-positive organisms. In the current antibiotics crisis, this would make it an ideal candidate for drug repurposing. However, its much lower activity against Gram-negative organisms prevents its broad-spectrum application. Here we show that, on the level of the presumed target, there is no difference in susceptibility between Gram-negative and Gram-positive species: thioredoxin reductases from both Escherichia coli and Bacillus subtilis are equally inhibited by auranofin. In both species, auranofin treatment leads to oxidative protein modification on a systemic level, as monitored by proteomics and the genetically encoded redox probe roGFP2. The single largest contributor to E. coli's relative resistance to auranofin seems to be the low-molecular-weight thiol glutathione, which is absent in B. subtilis and other Gram-positive species.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.