牙釉质的复杂性:胚胎起源、发育和人类遗传学。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Olivier Duverger, Janice S. Lee
{"title":"牙釉质的复杂性:胚胎起源、发育和人类遗传学。","authors":"Olivier Duverger,&nbsp;Janice S. Lee","doi":"10.1016/j.jsb.2024.108135","DOIUrl":null,"url":null,"abstract":"<div><div>Tooth enamel is a fascinating tissue with exceptional biomechanical properties that allow it to last for a lifetime. In this mini review, we discuss the unique embryonic origin of this highly mineralized tissue, the complex differentiation process that leads to its “construction” (amelogenesis), and the various genetic conditions that lead to impaired enamel development in humans (amelogenesis imperfecta). Tremendous progress was made in the last 30 years in understanding the molecular and cellular mechanism that leads to normal and pathologic enamel development. However, several aspects of amelogenesis remain to be elucidated and the function of many genes associated with amelogenesis imperfecta still needs to be decoded.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The intricacies of tooth enamel: Embryonic origin, development and human genetics\",\"authors\":\"Olivier Duverger,&nbsp;Janice S. Lee\",\"doi\":\"10.1016/j.jsb.2024.108135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tooth enamel is a fascinating tissue with exceptional biomechanical properties that allow it to last for a lifetime. In this mini review, we discuss the unique embryonic origin of this highly mineralized tissue, the complex differentiation process that leads to its “construction” (amelogenesis), and the various genetic conditions that lead to impaired enamel development in humans (amelogenesis imperfecta). Tremendous progress was made in the last 30 years in understanding the molecular and cellular mechanism that leads to normal and pathologic enamel development. However, several aspects of amelogenesis remain to be elucidated and the function of many genes associated with amelogenesis imperfecta still needs to be decoded.</div></div>\",\"PeriodicalId\":17074,\"journal\":{\"name\":\"Journal of structural biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047847724000753\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847724000753","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

牙釉质是一种令人着迷的组织,它具有特殊的生物力学特性,可以终生使用。在这篇微型综述中,我们将讨论这种高度矿化组织的独特胚胎起源、导致其 "生成"(釉质生成)的复杂分化过程,以及导致人类釉质发育受损(釉质发育不全)的各种遗传条件。在过去的 30 年中,人们在了解导致正常和病理性釉质发育的分子和细胞机制方面取得了巨大进步。然而,釉质发育的几个方面仍有待阐明,许多与釉质发育不全症相关的基因的功能仍有待解码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The intricacies of tooth enamel: Embryonic origin, development and human genetics
Tooth enamel is a fascinating tissue with exceptional biomechanical properties that allow it to last for a lifetime. In this mini review, we discuss the unique embryonic origin of this highly mineralized tissue, the complex differentiation process that leads to its “construction” (amelogenesis), and the various genetic conditions that lead to impaired enamel development in humans (amelogenesis imperfecta). Tremendous progress was made in the last 30 years in understanding the molecular and cellular mechanism that leads to normal and pathologic enamel development. However, several aspects of amelogenesis remain to be elucidated and the function of many genes associated with amelogenesis imperfecta still needs to be decoded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信