Hayet Belghit, Manuel Dauchez, Jean-Marc Crowet, Jessica Jonquet-Prevoteau
{"title":"Dy-SheHeRASADe:通过表面描述符表征 β 片层动力学。","authors":"Hayet Belghit, Manuel Dauchez, Jean-Marc Crowet, Jessica Jonquet-Prevoteau","doi":"10.1016/j.jmgm.2024.108876","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular dynamics (MD) simulations are important tools for studying the dynamic motions of macromolecules at the atomic level. With the increasing capabilities of high performance computing, MD simulations are becoming more widely used. This allows molecular modelers to simulate the molecular behavior of large molecular architectures for much longer trajectories. Appropriate visualization of MD trajectories is becoming essential to provide an immediate and intuitive understanding of a molecule’s dynamics and function. In this study, we implement a novel 3D graphical representation, Dynamical Sheets Helper for RepresentAtion of SurfAce Descriptors (Dy-SheHeRASADe), to visualize the <span><math><mi>β</mi></math></span> sheet secondary structures of proteins in the context of molecular dynamics. Dy-SheHeRASADe is developed in UnityMol, an open source molecular viewer and prototyping platform. We considered <span><math><mi>β</mi></math></span> sheet fluctuations and hydrogen bond formation during molecular dynamics simulations to characterize the parts of <span><math><mi>β</mi></math></span> sheets with large motions or with labile bonds. We propose two visualization modes based on a surface representation of the <span><math><mi>β</mi></math></span> sheets calculated according to the positions of the <span><math><mi>α</mi></math></span> carbons and the hydrogen bonds between the <span><math><mi>β</mi></math></span> strands. The volumetric mode, in which this surface is enclosed in a semi-transparent volume that represents the fluctuation zone of the sheet during dynamics. The heatmap mode, in which the surface is colored according to the amplitude values of the <span><math><mi>α</mi></math></span> carbons. In addition, we quantify the <span><math><mi>β</mi></math></span> sheet fluctuations by displaying the values of the largest and smallest movements of the <span><math><mi>β</mi></math></span> sheets, the surface area of the sheets, and the number of hydrogen bonds.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"133 ","pages":"Article 108876"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dy-SheHeRASADe: A representation of the β sheet dynamics through surface descriptors\",\"authors\":\"Hayet Belghit, Manuel Dauchez, Jean-Marc Crowet, Jessica Jonquet-Prevoteau\",\"doi\":\"10.1016/j.jmgm.2024.108876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molecular dynamics (MD) simulations are important tools for studying the dynamic motions of macromolecules at the atomic level. With the increasing capabilities of high performance computing, MD simulations are becoming more widely used. This allows molecular modelers to simulate the molecular behavior of large molecular architectures for much longer trajectories. Appropriate visualization of MD trajectories is becoming essential to provide an immediate and intuitive understanding of a molecule’s dynamics and function. In this study, we implement a novel 3D graphical representation, Dynamical Sheets Helper for RepresentAtion of SurfAce Descriptors (Dy-SheHeRASADe), to visualize the <span><math><mi>β</mi></math></span> sheet secondary structures of proteins in the context of molecular dynamics. Dy-SheHeRASADe is developed in UnityMol, an open source molecular viewer and prototyping platform. We considered <span><math><mi>β</mi></math></span> sheet fluctuations and hydrogen bond formation during molecular dynamics simulations to characterize the parts of <span><math><mi>β</mi></math></span> sheets with large motions or with labile bonds. We propose two visualization modes based on a surface representation of the <span><math><mi>β</mi></math></span> sheets calculated according to the positions of the <span><math><mi>α</mi></math></span> carbons and the hydrogen bonds between the <span><math><mi>β</mi></math></span> strands. The volumetric mode, in which this surface is enclosed in a semi-transparent volume that represents the fluctuation zone of the sheet during dynamics. The heatmap mode, in which the surface is colored according to the amplitude values of the <span><math><mi>α</mi></math></span> carbons. In addition, we quantify the <span><math><mi>β</mi></math></span> sheet fluctuations by displaying the values of the largest and smallest movements of the <span><math><mi>β</mi></math></span> sheets, the surface area of the sheets, and the number of hydrogen bonds.</div></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"133 \",\"pages\":\"Article 108876\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324001761\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001761","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Dy-SheHeRASADe: A representation of the β sheet dynamics through surface descriptors
Molecular dynamics (MD) simulations are important tools for studying the dynamic motions of macromolecules at the atomic level. With the increasing capabilities of high performance computing, MD simulations are becoming more widely used. This allows molecular modelers to simulate the molecular behavior of large molecular architectures for much longer trajectories. Appropriate visualization of MD trajectories is becoming essential to provide an immediate and intuitive understanding of a molecule’s dynamics and function. In this study, we implement a novel 3D graphical representation, Dynamical Sheets Helper for RepresentAtion of SurfAce Descriptors (Dy-SheHeRASADe), to visualize the sheet secondary structures of proteins in the context of molecular dynamics. Dy-SheHeRASADe is developed in UnityMol, an open source molecular viewer and prototyping platform. We considered sheet fluctuations and hydrogen bond formation during molecular dynamics simulations to characterize the parts of sheets with large motions or with labile bonds. We propose two visualization modes based on a surface representation of the sheets calculated according to the positions of the carbons and the hydrogen bonds between the strands. The volumetric mode, in which this surface is enclosed in a semi-transparent volume that represents the fluctuation zone of the sheet during dynamics. The heatmap mode, in which the surface is colored according to the amplitude values of the carbons. In addition, we quantify the sheet fluctuations by displaying the values of the largest and smallest movements of the sheets, the surface area of the sheets, and the number of hydrogen bonds.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.