Ahmed M Sidky, Ana Rosa Vieira Melo, Teresa T Kay, Mafalda Raposo, Manuela Lima, Darren G Monckton
{"title":"脊髓小脑共济失调 3 型/马加多-约瑟夫病患者血液和口腔拭子 DNA 中 ATXN3 CAG 重复的体细胞扩增与年龄有关。","authors":"Ahmed M Sidky, Ana Rosa Vieira Melo, Teresa T Kay, Mafalda Raposo, Manuela Lima, Darren G Monckton","doi":"10.1007/s00439-024-02698-7","DOIUrl":null,"url":null,"abstract":"<p><p>Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is caused by the expansion of a genetically unstable polyglutamine-encoding CAG repeat in ATXN3. Longer alleles are generally associated with earlier onset and frequent intergenerational expansions mediate the anticipation observed in this disorder. Somatic expansion of the repeat has also been implicated in disease onset and slowing the rate of somatic expansion has been proposed as a therapeutic strategy. Here, we utilised high-throughput ultra-deep MiSeq amplicon sequencing to precisely define the number and sequence of the ATXN3 repeat, the genotype of an adjacent single nucleotide variant and quantify somatic expansion in blood and buccal swab DNA of a cohort of individuals with SCA3 from the Azores islands (Portugal). We revealed systematic mis-sizing of the ATXN3 repeat and high levels of inaccuracy of the traditional fragment length analysis that have important implications for attempts to identify modifiers of clinical and molecular phenotypes. Quantification of somatic expansion in blood DNA and multivariate regression revealed the expected effects of age at sampling and CAG repeat length, although the effect of repeat length was surprisingly modest with much stronger associations with age. We also observed an association of the downstream rs12895357 single nucleotide variant with the rate of somatic expansion, and a higher level of somatic expansion in buccal swab DNA compared to blood. These data suggest that the ATXN3 locus in SCA3 patients in blood or buccal swab DNA might serve as a good biomarker for clinical trials testing suppressors of somatic expansion with peripheral exposure.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"1363-1378"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522074/pdf/","citationCount":"0","resultStr":"{\"title\":\"Age-dependent somatic expansion of the ATXN3 CAG repeat in the blood and buccal swab DNA of individuals with spinocerebellar ataxia type 3/Machado-Joseph disease.\",\"authors\":\"Ahmed M Sidky, Ana Rosa Vieira Melo, Teresa T Kay, Mafalda Raposo, Manuela Lima, Darren G Monckton\",\"doi\":\"10.1007/s00439-024-02698-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is caused by the expansion of a genetically unstable polyglutamine-encoding CAG repeat in ATXN3. Longer alleles are generally associated with earlier onset and frequent intergenerational expansions mediate the anticipation observed in this disorder. Somatic expansion of the repeat has also been implicated in disease onset and slowing the rate of somatic expansion has been proposed as a therapeutic strategy. Here, we utilised high-throughput ultra-deep MiSeq amplicon sequencing to precisely define the number and sequence of the ATXN3 repeat, the genotype of an adjacent single nucleotide variant and quantify somatic expansion in blood and buccal swab DNA of a cohort of individuals with SCA3 from the Azores islands (Portugal). We revealed systematic mis-sizing of the ATXN3 repeat and high levels of inaccuracy of the traditional fragment length analysis that have important implications for attempts to identify modifiers of clinical and molecular phenotypes. Quantification of somatic expansion in blood DNA and multivariate regression revealed the expected effects of age at sampling and CAG repeat length, although the effect of repeat length was surprisingly modest with much stronger associations with age. We also observed an association of the downstream rs12895357 single nucleotide variant with the rate of somatic expansion, and a higher level of somatic expansion in buccal swab DNA compared to blood. These data suggest that the ATXN3 locus in SCA3 patients in blood or buccal swab DNA might serve as a good biomarker for clinical trials testing suppressors of somatic expansion with peripheral exposure.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":\" \",\"pages\":\"1363-1378\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522074/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-024-02698-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02698-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
脊髓小脑共济失调 3 型/马加多-约瑟夫病(SCA3/MJD)是由 ATXN3 中一个遗传不稳定的多谷氨酰胺编码 CAG 重复扩增引起的。较长的等位基因通常与较早发病有关,频繁的代际扩展介导了在这种疾病中观察到的预期性。该重复的体细胞扩增也与疾病的发病有关,因此有人提出将减慢体细胞扩增的速度作为一种治疗策略。在这里,我们利用高通量超深度 MiSeq 扩增子测序技术,精确确定了 ATXN3 重复序列的数量和序列、相邻单核苷酸变体的基因型,并对亚速尔群岛(葡萄牙)SCA3 患者队列的血液和颊拭子 DNA 中的体细胞扩增进行了量化。我们发现了 ATXN3 重复序列的系统性大小错误以及传统片段长度分析的高度不准确性,这对试图识别临床和分子表型的修饰因子具有重要影响。对血液 DNA 中的体细胞扩增进行量化和多变量回归后发现,采样年龄和 CAG 重复序列长度会产生预期的影响,但令人惊讶的是,重复序列长度的影响并不明显,而与年龄的关联则更大。我们还观察到下游 rs12895357 单核苷酸变异与体细胞扩增率有关,而且与血液相比,颊拭子 DNA 中的体细胞扩增水平更高。这些数据表明,SCA3 患者血液或颊拭子 DNA 中的 ATXN3 基因座可作为一种良好的生物标记物,用于临床试验,测试外周暴露抑制体细胞扩增的因子。
Age-dependent somatic expansion of the ATXN3 CAG repeat in the blood and buccal swab DNA of individuals with spinocerebellar ataxia type 3/Machado-Joseph disease.
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is caused by the expansion of a genetically unstable polyglutamine-encoding CAG repeat in ATXN3. Longer alleles are generally associated with earlier onset and frequent intergenerational expansions mediate the anticipation observed in this disorder. Somatic expansion of the repeat has also been implicated in disease onset and slowing the rate of somatic expansion has been proposed as a therapeutic strategy. Here, we utilised high-throughput ultra-deep MiSeq amplicon sequencing to precisely define the number and sequence of the ATXN3 repeat, the genotype of an adjacent single nucleotide variant and quantify somatic expansion in blood and buccal swab DNA of a cohort of individuals with SCA3 from the Azores islands (Portugal). We revealed systematic mis-sizing of the ATXN3 repeat and high levels of inaccuracy of the traditional fragment length analysis that have important implications for attempts to identify modifiers of clinical and molecular phenotypes. Quantification of somatic expansion in blood DNA and multivariate regression revealed the expected effects of age at sampling and CAG repeat length, although the effect of repeat length was surprisingly modest with much stronger associations with age. We also observed an association of the downstream rs12895357 single nucleotide variant with the rate of somatic expansion, and a higher level of somatic expansion in buccal swab DNA compared to blood. These data suggest that the ATXN3 locus in SCA3 patients in blood or buccal swab DNA might serve as a good biomarker for clinical trials testing suppressors of somatic expansion with peripheral exposure.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.