Romane Durand, Céline Bellanger, Géraldine Descamps, Christelle Dousset, Sophie Maïga, Jennifer Derrien, Laura Thirouard, Louise Bouard, Hélène Asnagli, Philip Beer, Andrew Parker, Patricia Gomez-Bougie, Marie-Claire Devilder, Philippe Moreau, Cyrille Touzeau, Agnès Moreau-Aubry, David Chiron, Catherine Pellat-Deceunynck
{"title":"对 CTPS1 和 ATR 的联合抑制是 p53 缺陷骨髓瘤细胞的代谢弱点。","authors":"Romane Durand, Céline Bellanger, Géraldine Descamps, Christelle Dousset, Sophie Maïga, Jennifer Derrien, Laura Thirouard, Louise Bouard, Hélène Asnagli, Philip Beer, Andrew Parker, Patricia Gomez-Bougie, Marie-Claire Devilder, Philippe Moreau, Cyrille Touzeau, Agnès Moreau-Aubry, David Chiron, Catherine Pellat-Deceunynck","doi":"10.1002/hem3.70016","DOIUrl":null,"url":null,"abstract":"<p>In multiple myeloma, as in B-cell malignancies, mono- and especially bi-allelic <i>TP53</i> gene inactivation is a high-risk factor for treatment resistance, and there are currently no therapies specifically targeting p53 deficiency. In this study, we evaluated if the loss of cell cycle control in p53-deficient myeloma cells would confer a metabolically actionable vulnerability. We show that CTP synthase 1 (<i>CTPS1</i>), which encodes a CTP synthesis rate-limiting enzyme essential for DNA and RNA synthesis in lymphoid cells, is overexpressed in samples from myeloma patients displaying a high proliferation rate (high <i>MKI67</i> expression) or a low p53 score (synonymous with <i>TP53</i> deletion and/or mutation). This overexpression of <i>CTPS1</i> was associated with reduced survival in two cohorts. Using scRNA-seq analysis in 24 patient samples, we further demonstrate that myeloma cells in the S or G2/M phase display high <i>CTPS1</i> expression. Pharmacological inhibition of CTPS1 by STP-B induced cell cycle arrest in early S phase in isogenic NCI-H929 or XG7 <i>TP53</i><sup>+/+</sup>, <i>TP53</i><sup>−/−</sup>, and <i>TP53</i><sup>R175H/R175H</sup> cells and in a <i>TP53</i><sup>−/R123STOP</sup> patient sample. The functional annotation of transcriptional changes in 10 STP-B-treated myeloma cell lines revealed a decrease in protein translation and confirmed the blockade of cells into the S phase. The pharmacological inhibition of ATR, which governs the intrinsic S/G2 checkpoint, in STP-B-induced S-phase arrested cells synergistically induced cell death in <i>TP53</i><sup>+/+</sup>, <i>TP53</i><sup>−/−</sup>, and <i>TP53</i><sup>R175H/R175H</sup> isogenic cell lines (Bliss score >15). This combination induced replicative stress and caspase-mediated cell death and was highly effective in resistant/refractory patient samples with <i>TP53</i> deletion and/or mutation and in <i>TP53</i><sup>−/−</sup> NCI-H929 xenografted NOD-scid IL2Rgamma mice. Our in vitro, ex vivo, and in vivo data provide the rationale for combined CTPS1 and ATR inhibition for the treatment of p53-deficient patients.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"8 10","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460984/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combined inhibition of CTPS1 and ATR is a metabolic vulnerability in p53-deficient myeloma cells\",\"authors\":\"Romane Durand, Céline Bellanger, Géraldine Descamps, Christelle Dousset, Sophie Maïga, Jennifer Derrien, Laura Thirouard, Louise Bouard, Hélène Asnagli, Philip Beer, Andrew Parker, Patricia Gomez-Bougie, Marie-Claire Devilder, Philippe Moreau, Cyrille Touzeau, Agnès Moreau-Aubry, David Chiron, Catherine Pellat-Deceunynck\",\"doi\":\"10.1002/hem3.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In multiple myeloma, as in B-cell malignancies, mono- and especially bi-allelic <i>TP53</i> gene inactivation is a high-risk factor for treatment resistance, and there are currently no therapies specifically targeting p53 deficiency. In this study, we evaluated if the loss of cell cycle control in p53-deficient myeloma cells would confer a metabolically actionable vulnerability. We show that CTP synthase 1 (<i>CTPS1</i>), which encodes a CTP synthesis rate-limiting enzyme essential for DNA and RNA synthesis in lymphoid cells, is overexpressed in samples from myeloma patients displaying a high proliferation rate (high <i>MKI67</i> expression) or a low p53 score (synonymous with <i>TP53</i> deletion and/or mutation). This overexpression of <i>CTPS1</i> was associated with reduced survival in two cohorts. Using scRNA-seq analysis in 24 patient samples, we further demonstrate that myeloma cells in the S or G2/M phase display high <i>CTPS1</i> expression. Pharmacological inhibition of CTPS1 by STP-B induced cell cycle arrest in early S phase in isogenic NCI-H929 or XG7 <i>TP53</i><sup>+/+</sup>, <i>TP53</i><sup>−/−</sup>, and <i>TP53</i><sup>R175H/R175H</sup> cells and in a <i>TP53</i><sup>−/R123STOP</sup> patient sample. The functional annotation of transcriptional changes in 10 STP-B-treated myeloma cell lines revealed a decrease in protein translation and confirmed the blockade of cells into the S phase. The pharmacological inhibition of ATR, which governs the intrinsic S/G2 checkpoint, in STP-B-induced S-phase arrested cells synergistically induced cell death in <i>TP53</i><sup>+/+</sup>, <i>TP53</i><sup>−/−</sup>, and <i>TP53</i><sup>R175H/R175H</sup> isogenic cell lines (Bliss score >15). This combination induced replicative stress and caspase-mediated cell death and was highly effective in resistant/refractory patient samples with <i>TP53</i> deletion and/or mutation and in <i>TP53</i><sup>−/−</sup> NCI-H929 xenografted NOD-scid IL2Rgamma mice. Our in vitro, ex vivo, and in vivo data provide the rationale for combined CTPS1 and ATR inhibition for the treatment of p53-deficient patients.</p>\",\"PeriodicalId\":12982,\"journal\":{\"name\":\"HemaSphere\",\"volume\":\"8 10\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HemaSphere\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70016\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Combined inhibition of CTPS1 and ATR is a metabolic vulnerability in p53-deficient myeloma cells
In multiple myeloma, as in B-cell malignancies, mono- and especially bi-allelic TP53 gene inactivation is a high-risk factor for treatment resistance, and there are currently no therapies specifically targeting p53 deficiency. In this study, we evaluated if the loss of cell cycle control in p53-deficient myeloma cells would confer a metabolically actionable vulnerability. We show that CTP synthase 1 (CTPS1), which encodes a CTP synthesis rate-limiting enzyme essential for DNA and RNA synthesis in lymphoid cells, is overexpressed in samples from myeloma patients displaying a high proliferation rate (high MKI67 expression) or a low p53 score (synonymous with TP53 deletion and/or mutation). This overexpression of CTPS1 was associated with reduced survival in two cohorts. Using scRNA-seq analysis in 24 patient samples, we further demonstrate that myeloma cells in the S or G2/M phase display high CTPS1 expression. Pharmacological inhibition of CTPS1 by STP-B induced cell cycle arrest in early S phase in isogenic NCI-H929 or XG7 TP53+/+, TP53−/−, and TP53R175H/R175H cells and in a TP53−/R123STOP patient sample. The functional annotation of transcriptional changes in 10 STP-B-treated myeloma cell lines revealed a decrease in protein translation and confirmed the blockade of cells into the S phase. The pharmacological inhibition of ATR, which governs the intrinsic S/G2 checkpoint, in STP-B-induced S-phase arrested cells synergistically induced cell death in TP53+/+, TP53−/−, and TP53R175H/R175H isogenic cell lines (Bliss score >15). This combination induced replicative stress and caspase-mediated cell death and was highly effective in resistant/refractory patient samples with TP53 deletion and/or mutation and in TP53−/− NCI-H929 xenografted NOD-scid IL2Rgamma mice. Our in vitro, ex vivo, and in vivo data provide the rationale for combined CTPS1 and ATR inhibition for the treatment of p53-deficient patients.
期刊介绍:
HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology.
In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care.
Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.