{"title":"利用两阶段学习的卷积神经网络,在重建过程中对 SPECT-MPI 进行迭代去噪。","authors":"Farnaz Yousefzadeh, Mehran Yazdi, Seyed Mohammad Entezarmahdi, Reza Faghihi, Sadegh Ghasempoor, Negar Shahamiri, Zahra Abuee Mehrizi, Mahdi Haghighatafshar","doi":"10.1186/s40658-024-00687-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The problem of image denoising in single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a fundamental challenge. Although various image processing techniques have been presented, they may degrade the contrast of denoised images. The proposed idea in this study is to use a deep neural network as the denoising procedure during the iterative reconstruction process rather than the post-reconstruction phase. This method could decrease the background coefficient of variation (COV_bkg) of the final reconstructed image, which represents the amount of random noise, while improving the contrast-to-noise ratio (CNR).</p><p><strong>Methods: </strong>In this study, a generative adversarial network is used, where its generator is trained by a two-phase approach. In the first phase, the network is trained by a confined image region around the heart in transverse view. The second phase improves the network's generalization by tuning the network weights with the full image size as the input. The network was trained and tested by a dataset of 247 patients who underwent two immediate serially high- and low-noise SPECT-MPI.</p><p><strong>Results: </strong>Quantitative results show that compared to post-reconstruction low pass filtering and post-reconstruction deep denoising methods, our proposed method can decline the COV_bkg of the images by up to 10.28% and 12.52% and enhance the CNR by up to 54.54% and 45.82%, respectively.</p><p><strong>Conclusion: </strong>The iterative deep denoising method outperforms 2D low-pass Gaussian filtering with an 8.4-mm FWHM and post-reconstruction deep denoising approaches.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"82"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461437/pdf/","citationCount":"0","resultStr":"{\"title\":\"SPECT-MPI iterative denoising during the reconstruction process using a two-phase learned convolutional neural network.\",\"authors\":\"Farnaz Yousefzadeh, Mehran Yazdi, Seyed Mohammad Entezarmahdi, Reza Faghihi, Sadegh Ghasempoor, Negar Shahamiri, Zahra Abuee Mehrizi, Mahdi Haghighatafshar\",\"doi\":\"10.1186/s40658-024-00687-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The problem of image denoising in single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a fundamental challenge. Although various image processing techniques have been presented, they may degrade the contrast of denoised images. The proposed idea in this study is to use a deep neural network as the denoising procedure during the iterative reconstruction process rather than the post-reconstruction phase. This method could decrease the background coefficient of variation (COV_bkg) of the final reconstructed image, which represents the amount of random noise, while improving the contrast-to-noise ratio (CNR).</p><p><strong>Methods: </strong>In this study, a generative adversarial network is used, where its generator is trained by a two-phase approach. In the first phase, the network is trained by a confined image region around the heart in transverse view. The second phase improves the network's generalization by tuning the network weights with the full image size as the input. The network was trained and tested by a dataset of 247 patients who underwent two immediate serially high- and low-noise SPECT-MPI.</p><p><strong>Results: </strong>Quantitative results show that compared to post-reconstruction low pass filtering and post-reconstruction deep denoising methods, our proposed method can decline the COV_bkg of the images by up to 10.28% and 12.52% and enhance the CNR by up to 54.54% and 45.82%, respectively.</p><p><strong>Conclusion: </strong>The iterative deep denoising method outperforms 2D low-pass Gaussian filtering with an 8.4-mm FWHM and post-reconstruction deep denoising approaches.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"11 1\",\"pages\":\"82\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461437/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00687-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00687-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
SPECT-MPI iterative denoising during the reconstruction process using a two-phase learned convolutional neural network.
Purpose: The problem of image denoising in single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a fundamental challenge. Although various image processing techniques have been presented, they may degrade the contrast of denoised images. The proposed idea in this study is to use a deep neural network as the denoising procedure during the iterative reconstruction process rather than the post-reconstruction phase. This method could decrease the background coefficient of variation (COV_bkg) of the final reconstructed image, which represents the amount of random noise, while improving the contrast-to-noise ratio (CNR).
Methods: In this study, a generative adversarial network is used, where its generator is trained by a two-phase approach. In the first phase, the network is trained by a confined image region around the heart in transverse view. The second phase improves the network's generalization by tuning the network weights with the full image size as the input. The network was trained and tested by a dataset of 247 patients who underwent two immediate serially high- and low-noise SPECT-MPI.
Results: Quantitative results show that compared to post-reconstruction low pass filtering and post-reconstruction deep denoising methods, our proposed method can decline the COV_bkg of the images by up to 10.28% and 12.52% and enhance the CNR by up to 54.54% and 45.82%, respectively.
Conclusion: The iterative deep denoising method outperforms 2D low-pass Gaussian filtering with an 8.4-mm FWHM and post-reconstruction deep denoising approaches.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.