设计烷基铵阳离子以提高氧化还原液流电池中阴离子活性材料的溶解度:体积和链长的作用。

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Benjoe Rey B Visayas, Shyam K Pahari, Tulsi M Poudel, James A Golen, Patrick J Cappillino, Maricris L Mayes
{"title":"设计烷基铵阳离子以提高氧化还原液流电池中阴离子活性材料的溶解度:体积和链长的作用。","authors":"Benjoe Rey B Visayas, Shyam K Pahari, Tulsi M Poudel, James A Golen, Patrick J Cappillino, Maricris L Mayes","doi":"10.1002/cphc.202400517","DOIUrl":null,"url":null,"abstract":"<p><p>Advancing grid-scale energy storage technologies is crucial for realizing a fully renewable energy landscape, with non-aqueous redox flow batteries (NRFBs) presenting a promising solution. One of the current challenges in NRFBs stems from the low energy density of redox active materials, primarily due to their limited solubility in non-aqueous solvents. Herein, this study explores the solubility of vanadium(IV/V) bis-hydroxyiminodiacetate (VBH) crystals in acetonitrile, aiming to use them as anionic catholytes in NRFBs. We focused on enhancing VBH solubility by modifying the structure of the alkylammonium cation. Employing periodic density functional theory and a solvation model, we calculated the dissolution free energy <math> <semantics><mrow><mo>(</mo> <mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>d</mi> <mi>i</mi> <mi>s</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${({\\rm \\Delta }{G}_{dis}^{^{\\ast}}}$</annotation> </semantics> </math> ), which includes sublimation ( <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>u</mi> <mi>b</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\rm \\Delta }{G}_{sub}^{^{\\ast}}}$</annotation> </semantics> </math> ) and solvation ( <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>o</mi> <mi>l</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\rm \\Delta }{G}_{sol}^{^{\\ast}}}$</annotation> </semantics> </math> ) energies. Our results indicate that neither elongating straight-chain alkyl groups beyond a tetrabutylammonium baseline nor introducing bulky substituents at the nitrogen center significantly enhances solubility. However, the introduction of carbon spacers combined with terminal bulky substituents markedly improves solubility by favorably altering both <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>u</mi> <mi>b</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\rm \\Delta }{G}_{sub}^{^{\\ast}}}$</annotation> </semantics> </math> and <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>o</mi> <mi>l</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\rm \\Delta }{G}_{sol}^{^{\\ast}}}$</annotation> </semantics> </math> . These findings underline the nuanced impact of cation structure on solubility and suggest a viable approach to optimize VBH-based anionic catholytes. This advancement promises to enhance NRFB efficiency and sustainability, marking a significant step forward in energy storage technology.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400517"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Alkylammonium Cations for Enhanced Solubility of Anionic Active Materials in Redox Flow Batteries: The Role of Bulk and Chain Length.\",\"authors\":\"Benjoe Rey B Visayas, Shyam K Pahari, Tulsi M Poudel, James A Golen, Patrick J Cappillino, Maricris L Mayes\",\"doi\":\"10.1002/cphc.202400517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancing grid-scale energy storage technologies is crucial for realizing a fully renewable energy landscape, with non-aqueous redox flow batteries (NRFBs) presenting a promising solution. One of the current challenges in NRFBs stems from the low energy density of redox active materials, primarily due to their limited solubility in non-aqueous solvents. Herein, this study explores the solubility of vanadium(IV/V) bis-hydroxyiminodiacetate (VBH) crystals in acetonitrile, aiming to use them as anionic catholytes in NRFBs. We focused on enhancing VBH solubility by modifying the structure of the alkylammonium cation. Employing periodic density functional theory and a solvation model, we calculated the dissolution free energy <math> <semantics><mrow><mo>(</mo> <mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>d</mi> <mi>i</mi> <mi>s</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${({\\\\rm \\\\Delta }{G}_{dis}^{^{\\\\ast}}}$</annotation> </semantics> </math> ), which includes sublimation ( <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>u</mi> <mi>b</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\\\rm \\\\Delta }{G}_{sub}^{^{\\\\ast}}}$</annotation> </semantics> </math> ) and solvation ( <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>o</mi> <mi>l</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\\\rm \\\\Delta }{G}_{sol}^{^{\\\\ast}}}$</annotation> </semantics> </math> ) energies. Our results indicate that neither elongating straight-chain alkyl groups beyond a tetrabutylammonium baseline nor introducing bulky substituents at the nitrogen center significantly enhances solubility. However, the introduction of carbon spacers combined with terminal bulky substituents markedly improves solubility by favorably altering both <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>u</mi> <mi>b</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\\\rm \\\\Delta }{G}_{sub}^{^{\\\\ast}}}$</annotation> </semantics> </math> and <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>o</mi> <mi>l</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\\\rm \\\\Delta }{G}_{sol}^{^{\\\\ast}}}$</annotation> </semantics> </math> . These findings underline the nuanced impact of cation structure on solubility and suggest a viable approach to optimize VBH-based anionic catholytes. This advancement promises to enhance NRFB efficiency and sustainability, marking a significant step forward in energy storage technology.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400517\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400517\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400517","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

推进电网级储能技术对于实现完全可再生能源至关重要,而非水氧化还原液流电池(NRFB)则是一种前景广阔的解决方案。非水氧化还原液流电池目前面临的挑战之一是氧化还原活性材料的能量密度低,这主要是由于它们在非水溶剂中的溶解度有限。在此,本研究探讨了双(IV/V)羟基亚氨基二乙酸钒(VBH)晶体在乙腈中的溶解性,旨在将其用作 NRFB 中的阴离子阴溶物。我们的研究重点是通过改变烷基铵阳离子的结构来提高 VBH 的溶解度。我们采用周期密度泛函理论和溶解模型计算了溶解自由能([[EQUATION]]),其中包括升华能([[EQUATION]])和溶解能([[EQUATION]])。我们的研究结果表明,在四丁基铵基线之外拉长直链烷基或在氮中心引入大块取代基都不会显著提高溶解度。然而,引入碳间隔和末端大取代基则可通过有利地改变[[方程]]和[[方程]]来明显提高溶解度。这些发现强调了阳离子结构对溶解度的微妙影响,并提出了优化基于 VBH 的阴离子阴溶质的可行方法。这一进展有望提高 NRFB 的效率和可持续性,标志着储能技术向前迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Alkylammonium Cations for Enhanced Solubility of Anionic Active Materials in Redox Flow Batteries: The Role of Bulk and Chain Length.

Advancing grid-scale energy storage technologies is crucial for realizing a fully renewable energy landscape, with non-aqueous redox flow batteries (NRFBs) presenting a promising solution. One of the current challenges in NRFBs stems from the low energy density of redox active materials, primarily due to their limited solubility in non-aqueous solvents. Herein, this study explores the solubility of vanadium(IV/V) bis-hydroxyiminodiacetate (VBH) crystals in acetonitrile, aiming to use them as anionic catholytes in NRFBs. We focused on enhancing VBH solubility by modifying the structure of the alkylammonium cation. Employing periodic density functional theory and a solvation model, we calculated the dissolution free energy ( Δ G d i s * ${({\rm \Delta }{G}_{dis}^{^{\ast}}}$ ), which includes sublimation ( Δ G s u b * ${{\rm \Delta }{G}_{sub}^{^{\ast}}}$ ) and solvation ( Δ G s o l * ${{\rm \Delta }{G}_{sol}^{^{\ast}}}$ ) energies. Our results indicate that neither elongating straight-chain alkyl groups beyond a tetrabutylammonium baseline nor introducing bulky substituents at the nitrogen center significantly enhances solubility. However, the introduction of carbon spacers combined with terminal bulky substituents markedly improves solubility by favorably altering both Δ G s u b * ${{\rm \Delta }{G}_{sub}^{^{\ast}}}$ and Δ G s o l * ${{\rm \Delta }{G}_{sol}^{^{\ast}}}$ . These findings underline the nuanced impact of cation structure on solubility and suggest a viable approach to optimize VBH-based anionic catholytes. This advancement promises to enhance NRFB efficiency and sustainability, marking a significant step forward in energy storage technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信