Benjoe Rey B Visayas, Shyam K Pahari, Tulsi M Poudel, James A Golen, Patrick J Cappillino, Maricris L Mayes
{"title":"设计烷基铵阳离子以提高氧化还原液流电池中阴离子活性材料的溶解度:体积和链长的作用。","authors":"Benjoe Rey B Visayas, Shyam K Pahari, Tulsi M Poudel, James A Golen, Patrick J Cappillino, Maricris L Mayes","doi":"10.1002/cphc.202400517","DOIUrl":null,"url":null,"abstract":"<p><p>Advancing grid-scale energy storage technologies is crucial for realizing a fully renewable energy landscape, with non-aqueous redox flow batteries (NRFBs) presenting a promising solution. One of the current challenges in NRFBs stems from the low energy density of redox active materials, primarily due to their limited solubility in non-aqueous solvents. Herein, this study explores the solubility of vanadium(IV/V) bis-hydroxyiminodiacetate (VBH) crystals in acetonitrile, aiming to use them as anionic catholytes in NRFBs. We focused on enhancing VBH solubility by modifying the structure of the alkylammonium cation. Employing periodic density functional theory and a solvation model, we calculated the dissolution free energy <math> <semantics><mrow><mo>(</mo> <mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>d</mi> <mi>i</mi> <mi>s</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${({\\rm \\Delta }{G}_{dis}^{^{\\ast}}}$</annotation> </semantics> </math> ), which includes sublimation ( <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>u</mi> <mi>b</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\rm \\Delta }{G}_{sub}^{^{\\ast}}}$</annotation> </semantics> </math> ) and solvation ( <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>o</mi> <mi>l</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\rm \\Delta }{G}_{sol}^{^{\\ast}}}$</annotation> </semantics> </math> ) energies. Our results indicate that neither elongating straight-chain alkyl groups beyond a tetrabutylammonium baseline nor introducing bulky substituents at the nitrogen center significantly enhances solubility. However, the introduction of carbon spacers combined with terminal bulky substituents markedly improves solubility by favorably altering both <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>u</mi> <mi>b</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\rm \\Delta }{G}_{sub}^{^{\\ast}}}$</annotation> </semantics> </math> and <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>o</mi> <mi>l</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\rm \\Delta }{G}_{sol}^{^{\\ast}}}$</annotation> </semantics> </math> . These findings underline the nuanced impact of cation structure on solubility and suggest a viable approach to optimize VBH-based anionic catholytes. This advancement promises to enhance NRFB efficiency and sustainability, marking a significant step forward in energy storage technology.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400517"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Alkylammonium Cations for Enhanced Solubility of Anionic Active Materials in Redox Flow Batteries: The Role of Bulk and Chain Length.\",\"authors\":\"Benjoe Rey B Visayas, Shyam K Pahari, Tulsi M Poudel, James A Golen, Patrick J Cappillino, Maricris L Mayes\",\"doi\":\"10.1002/cphc.202400517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancing grid-scale energy storage technologies is crucial for realizing a fully renewable energy landscape, with non-aqueous redox flow batteries (NRFBs) presenting a promising solution. One of the current challenges in NRFBs stems from the low energy density of redox active materials, primarily due to their limited solubility in non-aqueous solvents. Herein, this study explores the solubility of vanadium(IV/V) bis-hydroxyiminodiacetate (VBH) crystals in acetonitrile, aiming to use them as anionic catholytes in NRFBs. We focused on enhancing VBH solubility by modifying the structure of the alkylammonium cation. Employing periodic density functional theory and a solvation model, we calculated the dissolution free energy <math> <semantics><mrow><mo>(</mo> <mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>d</mi> <mi>i</mi> <mi>s</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${({\\\\rm \\\\Delta }{G}_{dis}^{^{\\\\ast}}}$</annotation> </semantics> </math> ), which includes sublimation ( <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>u</mi> <mi>b</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\\\rm \\\\Delta }{G}_{sub}^{^{\\\\ast}}}$</annotation> </semantics> </math> ) and solvation ( <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>o</mi> <mi>l</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\\\rm \\\\Delta }{G}_{sol}^{^{\\\\ast}}}$</annotation> </semantics> </math> ) energies. Our results indicate that neither elongating straight-chain alkyl groups beyond a tetrabutylammonium baseline nor introducing bulky substituents at the nitrogen center significantly enhances solubility. However, the introduction of carbon spacers combined with terminal bulky substituents markedly improves solubility by favorably altering both <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>u</mi> <mi>b</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\\\rm \\\\Delta }{G}_{sub}^{^{\\\\ast}}}$</annotation> </semantics> </math> and <math> <semantics><mrow><mi>Δ</mi> <msubsup><mi>G</mi> <mrow><mi>s</mi> <mi>o</mi> <mi>l</mi></mrow> <msup><mrow></mrow> <mo>*</mo></msup> </msubsup> </mrow> <annotation>${{\\\\rm \\\\Delta }{G}_{sol}^{^{\\\\ast}}}$</annotation> </semantics> </math> . These findings underline the nuanced impact of cation structure on solubility and suggest a viable approach to optimize VBH-based anionic catholytes. This advancement promises to enhance NRFB efficiency and sustainability, marking a significant step forward in energy storage technology.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400517\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400517\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400517","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Designing Alkylammonium Cations for Enhanced Solubility of Anionic Active Materials in Redox Flow Batteries: The Role of Bulk and Chain Length.
Advancing grid-scale energy storage technologies is crucial for realizing a fully renewable energy landscape, with non-aqueous redox flow batteries (NRFBs) presenting a promising solution. One of the current challenges in NRFBs stems from the low energy density of redox active materials, primarily due to their limited solubility in non-aqueous solvents. Herein, this study explores the solubility of vanadium(IV/V) bis-hydroxyiminodiacetate (VBH) crystals in acetonitrile, aiming to use them as anionic catholytes in NRFBs. We focused on enhancing VBH solubility by modifying the structure of the alkylammonium cation. Employing periodic density functional theory and a solvation model, we calculated the dissolution free energy ), which includes sublimation ( ) and solvation ( ) energies. Our results indicate that neither elongating straight-chain alkyl groups beyond a tetrabutylammonium baseline nor introducing bulky substituents at the nitrogen center significantly enhances solubility. However, the introduction of carbon spacers combined with terminal bulky substituents markedly improves solubility by favorably altering both and . These findings underline the nuanced impact of cation structure on solubility and suggest a viable approach to optimize VBH-based anionic catholytes. This advancement promises to enhance NRFB efficiency and sustainability, marking a significant step forward in energy storage technology.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.