{"title":"帕拉卡西酵母细胞外囊泡可改善高氨血症大鼠的神经炎症、GABA 神经传导和运动不协调。","authors":"","doi":"10.1016/j.bbi.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with motor incoordination and cognitive impairment that reduce life quality and span. Motor incoordination is due to neuroinflammation and enhanced GABAergic neurotransmission in cerebellum. Recent reports support that probiotics, including <em>L. casei</em>, may improve cognitive function in different pathologies and MHE in cirrhotic patients. Extracellular vesicles (EV) are small cell-derived membrane vesicles that carry bioactive molecules released from cells, including bacteria. We hypothesized that EV from <em>Lacticaseibacillus paracasei</em> (LC-EV) could improve neuroinflammation, GABAergic neurotransmission and motor function in MHE. We show that LC-EV treatment reverses glial activation and neuroinflammation in cerebellum and restore motor coordination in hyperammonemic rats. Moreover, ex vivo treatment of cerebellar slices from hyperammonemic rats with LC-EV also reverses glial activation and neuroinflammation, and the enhancement of the TNFR1-S1PR2-BDNF-TrkB and TNFR1-TrkB-pAKT-NFκB-glutaminase-GAT3 pathway<strong>s</strong> and of GABAergic neurotransmission. The results reported support that LC-EV may be used as a therapeutic tool to improve motor incoordination in patients with MHE.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":null,"pages":null},"PeriodicalIF":8.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular vesicles from L. paracasei improve neuroinflammation, GABA neurotransmission and motor incoordination in hyperammonemic rats\",\"authors\":\"\",\"doi\":\"10.1016/j.bbi.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with motor incoordination and cognitive impairment that reduce life quality and span. Motor incoordination is due to neuroinflammation and enhanced GABAergic neurotransmission in cerebellum. Recent reports support that probiotics, including <em>L. casei</em>, may improve cognitive function in different pathologies and MHE in cirrhotic patients. Extracellular vesicles (EV) are small cell-derived membrane vesicles that carry bioactive molecules released from cells, including bacteria. We hypothesized that EV from <em>Lacticaseibacillus paracasei</em> (LC-EV) could improve neuroinflammation, GABAergic neurotransmission and motor function in MHE. We show that LC-EV treatment reverses glial activation and neuroinflammation in cerebellum and restore motor coordination in hyperammonemic rats. Moreover, ex vivo treatment of cerebellar slices from hyperammonemic rats with LC-EV also reverses glial activation and neuroinflammation, and the enhancement of the TNFR1-S1PR2-BDNF-TrkB and TNFR1-TrkB-pAKT-NFκB-glutaminase-GAT3 pathway<strong>s</strong> and of GABAergic neurotransmission. The results reported support that LC-EV may be used as a therapeutic tool to improve motor incoordination in patients with MHE.</div></div>\",\"PeriodicalId\":9199,\"journal\":{\"name\":\"Brain, Behavior, and Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain, Behavior, and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889159124006433\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159124006433","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Extracellular vesicles from L. paracasei improve neuroinflammation, GABA neurotransmission and motor incoordination in hyperammonemic rats
Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with motor incoordination and cognitive impairment that reduce life quality and span. Motor incoordination is due to neuroinflammation and enhanced GABAergic neurotransmission in cerebellum. Recent reports support that probiotics, including L. casei, may improve cognitive function in different pathologies and MHE in cirrhotic patients. Extracellular vesicles (EV) are small cell-derived membrane vesicles that carry bioactive molecules released from cells, including bacteria. We hypothesized that EV from Lacticaseibacillus paracasei (LC-EV) could improve neuroinflammation, GABAergic neurotransmission and motor function in MHE. We show that LC-EV treatment reverses glial activation and neuroinflammation in cerebellum and restore motor coordination in hyperammonemic rats. Moreover, ex vivo treatment of cerebellar slices from hyperammonemic rats with LC-EV also reverses glial activation and neuroinflammation, and the enhancement of the TNFR1-S1PR2-BDNF-TrkB and TNFR1-TrkB-pAKT-NFκB-glutaminase-GAT3 pathways and of GABAergic neurotransmission. The results reported support that LC-EV may be used as a therapeutic tool to improve motor incoordination in patients with MHE.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.