{"title":"利用分子动力学模拟研究拉索昔芬对 Y537S + F404V 双突变雌激素受体 Alpha 的疗效","authors":"El Mehdi Bouricha, Mohammed Hakmi","doi":"10.1177/11779322241288703","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen receptor alpha (ERα) plays a critical role in breast cancer (BC) progression, with endocrine therapy being a key treatment for ERα + BC. However, resistance often arises due to somatic mutations in the ERα ligand-binding domain (LBD). Lasofoxifene, a third-generation selective estrogen receptor modulator, has shown promise against Y537S and D538G mutations. However, the emergence of a novel F404 mutation in patients with pre-existing LBD mutations raises concerns about its impact on lasofoxifene efficacy. This study investigates the impact of the dual Y537S and F404V mutations on lasofoxifene's efficacy. Using molecular dynamics simulations and molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) free energy calculations, we found that the dual mutation reduces lasofoxifene binding affinity and binding free energy, disrupts crucial protein-ligand interactions, and induces significant conformational changes in the ligand-binding pocket. These alterations are likely due to the loss of the pi-pi stacking interaction in the F404V mutation. These findings suggest a potential reduction in lasofoxifene efficacy due to the dual mutation. Further experimental validation is required to confirm these results and fully understand the impact of dual mutations on lasofoxifene's effectiveness in ERα + metastatic BC.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241288703"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462567/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating Lasofoxifene Efficacy Against the Y537S + F404V Double-Mutant Estrogen Receptor Alpha Using Molecular Dynamics Simulations.\",\"authors\":\"El Mehdi Bouricha, Mohammed Hakmi\",\"doi\":\"10.1177/11779322241288703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estrogen receptor alpha (ERα) plays a critical role in breast cancer (BC) progression, with endocrine therapy being a key treatment for ERα + BC. However, resistance often arises due to somatic mutations in the ERα ligand-binding domain (LBD). Lasofoxifene, a third-generation selective estrogen receptor modulator, has shown promise against Y537S and D538G mutations. However, the emergence of a novel F404 mutation in patients with pre-existing LBD mutations raises concerns about its impact on lasofoxifene efficacy. This study investigates the impact of the dual Y537S and F404V mutations on lasofoxifene's efficacy. Using molecular dynamics simulations and molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) free energy calculations, we found that the dual mutation reduces lasofoxifene binding affinity and binding free energy, disrupts crucial protein-ligand interactions, and induces significant conformational changes in the ligand-binding pocket. These alterations are likely due to the loss of the pi-pi stacking interaction in the F404V mutation. These findings suggest a potential reduction in lasofoxifene efficacy due to the dual mutation. Further experimental validation is required to confirm these results and fully understand the impact of dual mutations on lasofoxifene's effectiveness in ERα + metastatic BC.</p>\",\"PeriodicalId\":9065,\"journal\":{\"name\":\"Bioinformatics and Biology Insights\",\"volume\":\"18 \",\"pages\":\"11779322241288703\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462567/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics and Biology Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11779322241288703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322241288703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Investigating Lasofoxifene Efficacy Against the Y537S + F404V Double-Mutant Estrogen Receptor Alpha Using Molecular Dynamics Simulations.
Estrogen receptor alpha (ERα) plays a critical role in breast cancer (BC) progression, with endocrine therapy being a key treatment for ERα + BC. However, resistance often arises due to somatic mutations in the ERα ligand-binding domain (LBD). Lasofoxifene, a third-generation selective estrogen receptor modulator, has shown promise against Y537S and D538G mutations. However, the emergence of a novel F404 mutation in patients with pre-existing LBD mutations raises concerns about its impact on lasofoxifene efficacy. This study investigates the impact of the dual Y537S and F404V mutations on lasofoxifene's efficacy. Using molecular dynamics simulations and molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) free energy calculations, we found that the dual mutation reduces lasofoxifene binding affinity and binding free energy, disrupts crucial protein-ligand interactions, and induces significant conformational changes in the ligand-binding pocket. These alterations are likely due to the loss of the pi-pi stacking interaction in the F404V mutation. These findings suggest a potential reduction in lasofoxifene efficacy due to the dual mutation. Further experimental validation is required to confirm these results and fully understand the impact of dual mutations on lasofoxifene's effectiveness in ERα + metastatic BC.
期刊介绍:
Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.