通过 LSTM 对多层组织的穿刺事件进行预测。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Bulbul Behera, M Felix Orlando, R S Anand
{"title":"通过 LSTM 对多层组织的穿刺事件进行预测。","authors":"Bulbul Behera, M Felix Orlando, R S Anand","doi":"10.1088/2057-1976/ad844c","DOIUrl":null,"url":null,"abstract":"<p><p>Recognizing penetration events in multilayer tissue is critical for many biomedical engineering applications, including surgical procedures and medical diagnostics. This paper presents a unique method for detecting penetration events in multilayer tissue using Long Short-Term Memory (LSTM) networks. LSTM networks, a form of recurrent neural network (RNN), excel at analyzing sequential data because of their ability to hold long-term dependencies. The suggested method collects time-series insertion force data from sensors integrated from a 1-DOF prismatic robot as it penetrates tissue. This data is then processed by the LSTM network, which has been trained to recognize patterns indicating penetration events through various tissue layers. The effectiveness of this approach is validated through experimental setups, demonstrating high accuracy and reliability in detecting penetration events. This technique offers significant improvements over traditional methods, providing a non-invasive, real-time solution that enhances the precision and safety of medical procedures involving multilayer tissue interaction.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of puncturing events through LSTM for multilayer tissue.\",\"authors\":\"Bulbul Behera, M Felix Orlando, R S Anand\",\"doi\":\"10.1088/2057-1976/ad844c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recognizing penetration events in multilayer tissue is critical for many biomedical engineering applications, including surgical procedures and medical diagnostics. This paper presents a unique method for detecting penetration events in multilayer tissue using Long Short-Term Memory (LSTM) networks. LSTM networks, a form of recurrent neural network (RNN), excel at analyzing sequential data because of their ability to hold long-term dependencies. The suggested method collects time-series insertion force data from sensors integrated from a 1-DOF prismatic robot as it penetrates tissue. This data is then processed by the LSTM network, which has been trained to recognize patterns indicating penetration events through various tissue layers. The effectiveness of this approach is validated through experimental setups, demonstrating high accuracy and reliability in detecting penetration events. This technique offers significant improvements over traditional methods, providing a non-invasive, real-time solution that enhances the precision and safety of medical procedures involving multilayer tissue interaction.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad844c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad844c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

识别多层组织中的穿透事件对于外科手术和医疗诊断等许多生物医学工程应用至关重要。本文介绍了一种利用长短期记忆(LSTM)网络检测多层组织中穿透事件的独特方法。LSTM 网络是递归神经网络 (RNN) 的一种形式,由于能够保持长期依赖关系,因此在分析连续数据方面表现出色。所建议的方法是从 1-DOF 棱柱机器人穿透组织时集成的传感器收集时间序列插入力数据。然后,LSTM 网络对这些数据进行处理,经过训练的 LSTM 网络能够识别表明穿透不同组织层事件的模式。通过实验设置验证了这种方法的有效性,证明其在检测穿透事件方面具有很高的准确性和可靠性。与传统方法相比,这项技术有了重大改进,提供了一种非侵入式实时解决方案,提高了涉及多层组织相互作用的医疗程序的精确性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of puncturing events through LSTM for multilayer tissue.

Recognizing penetration events in multilayer tissue is critical for many biomedical engineering applications, including surgical procedures and medical diagnostics. This paper presents a unique method for detecting penetration events in multilayer tissue using Long Short-Term Memory (LSTM) networks. LSTM networks, a form of recurrent neural network (RNN), excel at analyzing sequential data because of their ability to hold long-term dependencies. The suggested method collects time-series insertion force data from sensors integrated from a 1-DOF prismatic robot as it penetrates tissue. This data is then processed by the LSTM network, which has been trained to recognize patterns indicating penetration events through various tissue layers. The effectiveness of this approach is validated through experimental setups, demonstrating high accuracy and reliability in detecting penetration events. This technique offers significant improvements over traditional methods, providing a non-invasive, real-time solution that enhances the precision and safety of medical procedures involving multilayer tissue interaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信