作为内脏利什曼病先导化合物的脱氢杜松子醇 B 衍生物的合成--作用机理和体内药代动力学研究。

IF 4.1 2区 医学 Q2 MICROBIOLOGY
Antimicrobial Agents and Chemotherapy Pub Date : 2024-11-06 Epub Date: 2024-10-09 DOI:10.1128/aac.00831-24
Maiara Amaral, Maiara M Romanelli, Hannah Asiki, Joana Bicker, Daniela P Lage, Camila S Freitas, Noemi N Taniwaki, Joao Henrique G Lago, Eduardo A F Coelho, Amílcar Falcão, Ana Fortuna, Edward A Anderson, Andre G Tempone
{"title":"作为内脏利什曼病先导化合物的脱氢杜松子醇 B 衍生物的合成--作用机理和体内药代动力学研究。","authors":"Maiara Amaral, Maiara M Romanelli, Hannah Asiki, Joana Bicker, Daniela P Lage, Camila S Freitas, Noemi N Taniwaki, Joao Henrique G Lago, Eduardo A F Coelho, Amílcar Falcão, Ana Fortuna, Edward A Anderson, Andre G Tempone","doi":"10.1128/aac.00831-24","DOIUrl":null,"url":null,"abstract":"<p><p>Leishmaniasis is a parasitic neglected tropical disease, affecting 12 million people. Available treatments present several limitations, with an increasing number of resistance cases. In the search for new chemotherapies, the natural product dehydrodieugenol B was used as a scaffold for the synthesis of a series of derivatives, resulting in the discovery of the promising analog [4-(4-(5-allyl-3-methoxy-2-((4-methoxybenzyl)oxy)phenoxy)-3-methoxybenzyl)morpholine, <b>1</b>]. In this work, we investigated the effect of compound <b>1</b> on cell signaling in <i>Leishmania (L.) infantum</i>, culminating in cell death, as well as its immunomodulatory effect in the host cell. Additionally, we performed a pharmacokinetic profile study in an animal model. After treatment, compound <b>1</b> induced the alkalinization of acidocalcisomes and concomitant Ca<sup>2+</sup> release in the parasite. These events may induce depolarization of the mitochondrial potential, with successive collapse of the bioenergetic system, leading to a reduction of ATP and reactive oxygen species (ROS) levels. The analysis of total proteins and protein profile by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) demonstrated that compound <b>1</b> also altered the parasite proteins after treatment. Transmission electron microscopy studies revealed ultrastructural damage to mitochondria; together, these data suggest that compound <b>1</b> may promote autophagic cell death. Additionally, compound <b>1</b> also induced an immunomodulatory effect in host cells, with a reduction of Th1 and Th2 cytokine response, characterizing an anti-inflammatory compound. The obtained pharmacokinetic profile in rats enhances the potential of the compound, with a mean plasma half-life (T<sub>1/2</sub>) of 21 h. These data reinforce the potential of compound <b>1</b> as a new lead for future efficacy studies.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0083124"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539218/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis of a dehydrodieugenol B derivative as a lead compound for visceral leishmaniasis-mechanism of action and <i>in vivo</i> pharmacokinetic studies.\",\"authors\":\"Maiara Amaral, Maiara M Romanelli, Hannah Asiki, Joana Bicker, Daniela P Lage, Camila S Freitas, Noemi N Taniwaki, Joao Henrique G Lago, Eduardo A F Coelho, Amílcar Falcão, Ana Fortuna, Edward A Anderson, Andre G Tempone\",\"doi\":\"10.1128/aac.00831-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leishmaniasis is a parasitic neglected tropical disease, affecting 12 million people. Available treatments present several limitations, with an increasing number of resistance cases. In the search for new chemotherapies, the natural product dehydrodieugenol B was used as a scaffold for the synthesis of a series of derivatives, resulting in the discovery of the promising analog [4-(4-(5-allyl-3-methoxy-2-((4-methoxybenzyl)oxy)phenoxy)-3-methoxybenzyl)morpholine, <b>1</b>]. In this work, we investigated the effect of compound <b>1</b> on cell signaling in <i>Leishmania (L.) infantum</i>, culminating in cell death, as well as its immunomodulatory effect in the host cell. Additionally, we performed a pharmacokinetic profile study in an animal model. After treatment, compound <b>1</b> induced the alkalinization of acidocalcisomes and concomitant Ca<sup>2+</sup> release in the parasite. These events may induce depolarization of the mitochondrial potential, with successive collapse of the bioenergetic system, leading to a reduction of ATP and reactive oxygen species (ROS) levels. The analysis of total proteins and protein profile by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) demonstrated that compound <b>1</b> also altered the parasite proteins after treatment. Transmission electron microscopy studies revealed ultrastructural damage to mitochondria; together, these data suggest that compound <b>1</b> may promote autophagic cell death. Additionally, compound <b>1</b> also induced an immunomodulatory effect in host cells, with a reduction of Th1 and Th2 cytokine response, characterizing an anti-inflammatory compound. The obtained pharmacokinetic profile in rats enhances the potential of the compound, with a mean plasma half-life (T<sub>1/2</sub>) of 21 h. These data reinforce the potential of compound <b>1</b> as a new lead for future efficacy studies.</p>\",\"PeriodicalId\":8152,\"journal\":{\"name\":\"Antimicrobial Agents and Chemotherapy\",\"volume\":\" \",\"pages\":\"e0083124\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539218/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antimicrobial Agents and Chemotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/aac.00831-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.00831-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利什曼病是一种被忽视的热带寄生虫病,影响 1 200 万人。现有的治疗方法存在一些局限性,抗药性病例越来越多。在寻找新的化疗方法的过程中,人们以天然产物脱氢杜冷丁 B 为支架,合成了一系列衍生物,最终发现了很有前景的类似物[4-(4-(5-烯丙基-3-甲氧基-2-((4-甲氧基苄基)氧基)苯氧基)-3-甲氧基苄基)吗啉,1]。在这项工作中,我们研究了化合物 1 对婴儿利什曼原虫(L. infantum)细胞信号传导的影响,最终导致细胞死亡,以及它对宿主细胞的免疫调节作用。此外,我们还在动物模型中进行了药代动力学研究。治疗后,化合物 1 会诱导寄生虫体内的酸性钙化体碱化,同时释放 Ca2+。这些事件可能会导致线粒体电位去极化,生物能系统相继崩溃,从而导致 ATP 和活性氧(ROS)水平降低。基质辅助激光解吸电离飞行时间质谱(MALDI-TOF/MS)对总蛋白质和蛋白质概况的分析表明,化合物 1 还改变了处理后的寄生虫蛋白质。透射电子显微镜研究揭示了线粒体的超微结构损伤;这些数据共同表明,化合物 1 可能会促进自噬性细胞死亡。此外,化合物 1 还能诱导宿主细胞产生免疫调节作用,减少 Th1 和 Th2 细胞因子反应,是一种抗炎化合物。在大鼠体内获得的药代动力学特征增强了该化合物的潜力,其平均血浆半衰期(T1/2)为 21 小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of a dehydrodieugenol B derivative as a lead compound for visceral leishmaniasis-mechanism of action and in vivo pharmacokinetic studies.

Leishmaniasis is a parasitic neglected tropical disease, affecting 12 million people. Available treatments present several limitations, with an increasing number of resistance cases. In the search for new chemotherapies, the natural product dehydrodieugenol B was used as a scaffold for the synthesis of a series of derivatives, resulting in the discovery of the promising analog [4-(4-(5-allyl-3-methoxy-2-((4-methoxybenzyl)oxy)phenoxy)-3-methoxybenzyl)morpholine, 1]. In this work, we investigated the effect of compound 1 on cell signaling in Leishmania (L.) infantum, culminating in cell death, as well as its immunomodulatory effect in the host cell. Additionally, we performed a pharmacokinetic profile study in an animal model. After treatment, compound 1 induced the alkalinization of acidocalcisomes and concomitant Ca2+ release in the parasite. These events may induce depolarization of the mitochondrial potential, with successive collapse of the bioenergetic system, leading to a reduction of ATP and reactive oxygen species (ROS) levels. The analysis of total proteins and protein profile by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) demonstrated that compound 1 also altered the parasite proteins after treatment. Transmission electron microscopy studies revealed ultrastructural damage to mitochondria; together, these data suggest that compound 1 may promote autophagic cell death. Additionally, compound 1 also induced an immunomodulatory effect in host cells, with a reduction of Th1 and Th2 cytokine response, characterizing an anti-inflammatory compound. The obtained pharmacokinetic profile in rats enhances the potential of the compound, with a mean plasma half-life (T1/2) of 21 h. These data reinforce the potential of compound 1 as a new lead for future efficacy studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信