Anastasia A. Antonets , Ekaterina V. Spitsyna , Vladimir Yu. Tyurin , Dmitrii M. Mazur , Dmitry S. Yakovlev , Denis A. Babkov , Mariya S. Pshenichnikova , Alexander A. Spasov , Elena R. Milaeva , Alexey A. Nazarov
{"title":"与醋酸阿比特龙的钌配合物作为抗增殖剂。","authors":"Anastasia A. Antonets , Ekaterina V. Spitsyna , Vladimir Yu. Tyurin , Dmitrii M. Mazur , Dmitry S. Yakovlev , Denis A. Babkov , Mariya S. Pshenichnikova , Alexander A. Spasov , Elena R. Milaeva , Alexey A. Nazarov","doi":"10.1016/j.jinorgbio.2024.112754","DOIUrl":null,"url":null,"abstract":"<div><div>This study is dedicated to the development of multimodal anticancer agents. We have obtained ruthenium complexes conjugated with the steroid-type antitumor drug abiraterone acetate in order to take advantage of the dual antitumor properties of both ruthenium and abiraterone. The compounds exhibit good antiproliferative activity against cancer cells, with selectivity over primary fibroblasts. Real-time cell analysis revealed that compound dichlorido(η<sup>6</sup><span><span>6</span></span>-p-cymene)(abiraterone acetate)ruthenium(II) had pronounced antiproliferation activity compared to abiraterone acetate. Flow cytometric studies on the mechanism of cell death have revealed that the most active compound induces apoptosis more effectively than abiraterone acetate. Our findings demonstrate the potential of this novel dual-action compound as promising candidates for further development as anticancer agents.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"262 ","pages":"Article 112754"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ruthenium complexes with abiraterone acetate as antiproliferative agents\",\"authors\":\"Anastasia A. Antonets , Ekaterina V. Spitsyna , Vladimir Yu. Tyurin , Dmitrii M. Mazur , Dmitry S. Yakovlev , Denis A. Babkov , Mariya S. Pshenichnikova , Alexander A. Spasov , Elena R. Milaeva , Alexey A. Nazarov\",\"doi\":\"10.1016/j.jinorgbio.2024.112754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study is dedicated to the development of multimodal anticancer agents. We have obtained ruthenium complexes conjugated with the steroid-type antitumor drug abiraterone acetate in order to take advantage of the dual antitumor properties of both ruthenium and abiraterone. The compounds exhibit good antiproliferative activity against cancer cells, with selectivity over primary fibroblasts. Real-time cell analysis revealed that compound dichlorido(η<sup>6</sup><span><span>6</span></span>-p-cymene)(abiraterone acetate)ruthenium(II) had pronounced antiproliferation activity compared to abiraterone acetate. Flow cytometric studies on the mechanism of cell death have revealed that the most active compound induces apoptosis more effectively than abiraterone acetate. Our findings demonstrate the potential of this novel dual-action compound as promising candidates for further development as anticancer agents.</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"262 \",\"pages\":\"Article 112754\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013424002794\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424002794","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ruthenium complexes with abiraterone acetate as antiproliferative agents
This study is dedicated to the development of multimodal anticancer agents. We have obtained ruthenium complexes conjugated with the steroid-type antitumor drug abiraterone acetate in order to take advantage of the dual antitumor properties of both ruthenium and abiraterone. The compounds exhibit good antiproliferative activity against cancer cells, with selectivity over primary fibroblasts. Real-time cell analysis revealed that compound dichlorido(η66-p-cymene)(abiraterone acetate)ruthenium(II) had pronounced antiproliferation activity compared to abiraterone acetate. Flow cytometric studies on the mechanism of cell death have revealed that the most active compound induces apoptosis more effectively than abiraterone acetate. Our findings demonstrate the potential of this novel dual-action compound as promising candidates for further development as anticancer agents.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.