选择内源启动子以改善裂殖子藻类角鲨烯的生物合成

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Fang-Tong Nong, Zi-Xu Zhang, Lu-Wei Xu, Fei Du, Wang Ma, Guang Yang, Xiao-Man Sun
{"title":"选择内源启动子以改善裂殖子藻类角鲨烯的生物合成","authors":"Fang-Tong Nong,&nbsp;Zi-Xu Zhang,&nbsp;Lu-Wei Xu,&nbsp;Fei Du,&nbsp;Wang Ma,&nbsp;Guang Yang,&nbsp;Xiao-Man Sun","doi":"10.1002/biot.202400237","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Squalene (C<sub>30</sub>H<sub>50</sub>) is an acyclic triterpenoid compound renowned for its myriad physiological functions, such as anticancer and antioxidative properties, rendering it invaluable in both the food and pharmaceutical sectors. Due to the natural resource constraints, microbial fermentation has emerged as a prominent trend. <i>Schizochytrium</i> sp., known to harbor the intact mevalonate acid (MVA) pathway, possesses the inherent capability to biosynthesize squalene. However, there is a dearth of reported key genes in both the MVA and the squalene synthesis pathways, along with the associated promoter elements for their modification. This study commenced by cloning and characterizing 13 endogenous promoters derived from transcriptome sequencing data. Subsequently, five promoters exhibiting varying expression intensities were chosen from the aforementioned pool to facilitate the overexpression of the squalene synthase gene squalene synthetase (SQS), pivotal in the MVA pathway. Ultimately, a transformed strain designated as SQS-3626, exhibiting squalene production 2.8 times greater than that of the wild-type strain, was identified. Finally, the optimization of nitrogen source concentrations and trace element contents in the fermentation medium was conducted. Following 120 h of fed-batch fermentation, the accumulated final squalene yield in the transformed strain SQS-3626 reached 2.2 g/L.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selecting Endogenous Promoters for Improving Biosynthesis of Squalene in Schizochytrium sp.\",\"authors\":\"Fang-Tong Nong,&nbsp;Zi-Xu Zhang,&nbsp;Lu-Wei Xu,&nbsp;Fei Du,&nbsp;Wang Ma,&nbsp;Guang Yang,&nbsp;Xiao-Man Sun\",\"doi\":\"10.1002/biot.202400237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Squalene (C<sub>30</sub>H<sub>50</sub>) is an acyclic triterpenoid compound renowned for its myriad physiological functions, such as anticancer and antioxidative properties, rendering it invaluable in both the food and pharmaceutical sectors. Due to the natural resource constraints, microbial fermentation has emerged as a prominent trend. <i>Schizochytrium</i> sp., known to harbor the intact mevalonate acid (MVA) pathway, possesses the inherent capability to biosynthesize squalene. However, there is a dearth of reported key genes in both the MVA and the squalene synthesis pathways, along with the associated promoter elements for their modification. This study commenced by cloning and characterizing 13 endogenous promoters derived from transcriptome sequencing data. Subsequently, five promoters exhibiting varying expression intensities were chosen from the aforementioned pool to facilitate the overexpression of the squalene synthase gene squalene synthetase (SQS), pivotal in the MVA pathway. Ultimately, a transformed strain designated as SQS-3626, exhibiting squalene production 2.8 times greater than that of the wild-type strain, was identified. Finally, the optimization of nitrogen source concentrations and trace element contents in the fermentation medium was conducted. Following 120 h of fed-batch fermentation, the accumulated final squalene yield in the transformed strain SQS-3626 reached 2.2 g/L.</p>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 10\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400237\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400237","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

角鲨烯(C30H50)是一种无环三萜类化合物,因其具有抗癌和抗氧化等多种生理功能而闻名于世,在食品和医药领域都具有重要价值。由于自然资源的限制,微生物发酵已成为一种突出的趋势。已知含有完整的甲羟戊酸(MVA)途径的 Schizochytrium sp.具有生物合成角鲨烯的内在能力。然而,关于甲羟戊酸(MVA)和角鲨烯合成途径中的关键基因以及对其进行修饰的相关启动子元件的报道却十分匮乏。本研究首先克隆并鉴定了从转录组测序数据中获得的 13 个内源启动子。随后,从上述启动子库中选择了五个表现出不同表达强度的启动子,以促进在 MVA 途径中起关键作用的角鲨烯合成酶基因角鲨烯合成酶(SQS)的过表达。最终,一个被命名为 SQS-3626 的转化菌株被鉴定出来,它的角鲨烯产量是野生型菌株的 2.8 倍。最后,对发酵培养基中的氮源浓度和微量元素含量进行了优化。经过 120 小时的饲料批量发酵,转化菌株 SQS-3626 的角鲨烯最终累积产量达到 2.2 克/升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Selecting Endogenous Promoters for Improving Biosynthesis of Squalene in Schizochytrium sp.

Selecting Endogenous Promoters for Improving Biosynthesis of Squalene in Schizochytrium sp.

Squalene (C30H50) is an acyclic triterpenoid compound renowned for its myriad physiological functions, such as anticancer and antioxidative properties, rendering it invaluable in both the food and pharmaceutical sectors. Due to the natural resource constraints, microbial fermentation has emerged as a prominent trend. Schizochytrium sp., known to harbor the intact mevalonate acid (MVA) pathway, possesses the inherent capability to biosynthesize squalene. However, there is a dearth of reported key genes in both the MVA and the squalene synthesis pathways, along with the associated promoter elements for their modification. This study commenced by cloning and characterizing 13 endogenous promoters derived from transcriptome sequencing data. Subsequently, five promoters exhibiting varying expression intensities were chosen from the aforementioned pool to facilitate the overexpression of the squalene synthase gene squalene synthetase (SQS), pivotal in the MVA pathway. Ultimately, a transformed strain designated as SQS-3626, exhibiting squalene production 2.8 times greater than that of the wild-type strain, was identified. Finally, the optimization of nitrogen source concentrations and trace element contents in the fermentation medium was conducted. Following 120 h of fed-batch fermentation, the accumulated final squalene yield in the transformed strain SQS-3626 reached 2.2 g/L.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信