Guihong Zhao, Dezhi Zhang, Benzheng Zhou, Zihan Li, Geer Liu, Hedan Li, Xiaoqing Hu, Xiaoyuan Wang
{"title":"精细调节谷氨酸棒状杆菌 WM001 生产 l-异亮氨酸的碳通量以高效生产 l-苏氨酸。","authors":"Guihong Zhao, Dezhi Zhang, Benzheng Zhou, Zihan Li, Geer Liu, Hedan Li, Xiaoqing Hu, Xiaoyuan Wang","doi":"10.1021/acssynbio.4c00518","DOIUrl":null,"url":null,"abstract":"<p><p>l-Threonine, an essential amino acid, is widely used in various industries, with an annually growing demand. However, the present <i>Corynebacterium glutamicum</i> strains are difficult to achieve industrialization of l-threonine due to low yield and purity. In this study, we engineered an l-isoleucine-producing <i>C. glutamicum</i> WM001 to efficiently produce l-threonine by finely regulating the carbon flux. First, the threonine dehydratase in WM001 was mutated to lower the level of l-isoleucine production, then the homoserine dehydrogenase and aspartate kinase were mutated to release the feedback inhibition of l-threonine, and the resulting strain TWZ006 produced 14.2 g/L l-threonine. Subsequently, aspartate ammonia-lyase and aspartate transaminase were overexpressed to accumulate the precursor l-aspartate. Next, phosphoenolpyruvate carboxylase, pyruvate carboxylase and pyruvate kinase were overexpressed, and phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase were inactivated to fine-regulate the carbon flux among oxaloacetate, pyruvate and phosphoenolpyruvate. The resulting strain TWZ017 produced 21.5 g/L l-threonine. Finally, dihydrodipicolinate synthase was mutated with strong allosteric inhibition from l-lysine to significantly decrease byproducts accumulation, l-threonine export was optimized, and the final engineered strain TWZ024/pXTuf-<i>thrE</i> produced 78.3 g/L of l-threonine with the yield of 0.33 g/g glucose and the productivity of 0.82 g/L/h in a 7 L bioreactor. To the best of our knowledge, this represents the highest l-threonine production in <i>C. glutamicum</i>, providing possibilities for industrial-scale production.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"3446-3460"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Regulating the Carbon Flux of l-Isoleucine Producing <i>Corynebacterium glutamicum</i> WM001 for Efficient l-Threonine Production.\",\"authors\":\"Guihong Zhao, Dezhi Zhang, Benzheng Zhou, Zihan Li, Geer Liu, Hedan Li, Xiaoqing Hu, Xiaoyuan Wang\",\"doi\":\"10.1021/acssynbio.4c00518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>l-Threonine, an essential amino acid, is widely used in various industries, with an annually growing demand. However, the present <i>Corynebacterium glutamicum</i> strains are difficult to achieve industrialization of l-threonine due to low yield and purity. In this study, we engineered an l-isoleucine-producing <i>C. glutamicum</i> WM001 to efficiently produce l-threonine by finely regulating the carbon flux. First, the threonine dehydratase in WM001 was mutated to lower the level of l-isoleucine production, then the homoserine dehydrogenase and aspartate kinase were mutated to release the feedback inhibition of l-threonine, and the resulting strain TWZ006 produced 14.2 g/L l-threonine. Subsequently, aspartate ammonia-lyase and aspartate transaminase were overexpressed to accumulate the precursor l-aspartate. Next, phosphoenolpyruvate carboxylase, pyruvate carboxylase and pyruvate kinase were overexpressed, and phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase were inactivated to fine-regulate the carbon flux among oxaloacetate, pyruvate and phosphoenolpyruvate. The resulting strain TWZ017 produced 21.5 g/L l-threonine. Finally, dihydrodipicolinate synthase was mutated with strong allosteric inhibition from l-lysine to significantly decrease byproducts accumulation, l-threonine export was optimized, and the final engineered strain TWZ024/pXTuf-<i>thrE</i> produced 78.3 g/L of l-threonine with the yield of 0.33 g/g glucose and the productivity of 0.82 g/L/h in a 7 L bioreactor. To the best of our knowledge, this represents the highest l-threonine production in <i>C. glutamicum</i>, providing possibilities for industrial-scale production.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\" \",\"pages\":\"3446-3460\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00518\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00518","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fine-Regulating the Carbon Flux of l-Isoleucine Producing Corynebacterium glutamicum WM001 for Efficient l-Threonine Production.
l-Threonine, an essential amino acid, is widely used in various industries, with an annually growing demand. However, the present Corynebacterium glutamicum strains are difficult to achieve industrialization of l-threonine due to low yield and purity. In this study, we engineered an l-isoleucine-producing C. glutamicum WM001 to efficiently produce l-threonine by finely regulating the carbon flux. First, the threonine dehydratase in WM001 was mutated to lower the level of l-isoleucine production, then the homoserine dehydrogenase and aspartate kinase were mutated to release the feedback inhibition of l-threonine, and the resulting strain TWZ006 produced 14.2 g/L l-threonine. Subsequently, aspartate ammonia-lyase and aspartate transaminase were overexpressed to accumulate the precursor l-aspartate. Next, phosphoenolpyruvate carboxylase, pyruvate carboxylase and pyruvate kinase were overexpressed, and phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase were inactivated to fine-regulate the carbon flux among oxaloacetate, pyruvate and phosphoenolpyruvate. The resulting strain TWZ017 produced 21.5 g/L l-threonine. Finally, dihydrodipicolinate synthase was mutated with strong allosteric inhibition from l-lysine to significantly decrease byproducts accumulation, l-threonine export was optimized, and the final engineered strain TWZ024/pXTuf-thrE produced 78.3 g/L of l-threonine with the yield of 0.33 g/g glucose and the productivity of 0.82 g/L/h in a 7 L bioreactor. To the best of our knowledge, this represents the highest l-threonine production in C. glutamicum, providing possibilities for industrial-scale production.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.