通过控制超薄异质非晶层,降低键合氮化镓/金刚石界面的热边界电阻

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bin Xu , Fengwen Mu , Yingzhou Liu , Rulei Guo , Shiqian Hu , Junichiro Shiomi
{"title":"通过控制超薄异质非晶层,降低键合氮化镓/金刚石界面的热边界电阻","authors":"Bin Xu ,&nbsp;Fengwen Mu ,&nbsp;Yingzhou Liu ,&nbsp;Rulei Guo ,&nbsp;Shiqian Hu ,&nbsp;Junichiro Shiomi","doi":"10.1016/j.actamat.2024.120458","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal boundary resistance (TBR) in semiconductor-on-diamond structure bottlenecks efficient heat dissipation in electronic devices. In this study, to reduce the TBR between GaN and diamond, surface-activated bonding with a hybrid SiO<sub>x</sub>-Ar ion source was initially applied to achieve an ultrathin interfacial layer. The simultaneous surface activation and slow deposition of the SiO<sub>x</sub> binder layer enabled precise control over layer thickness (2.5–5.3 nm) and formation of an amorphous heterogeneous nanostructure comprising a SiO<sub>x</sub> region between two inter-diffusion regions. Crucially, the 2.5-nm-thick interfacial layer achieved a TBR of 8.3 m<sup>2</sup>⋅K/GW, a record low for direct-bonded GaN/diamond interface. A remarkable feature is that the TBR is extremely sensitive to the interfacial thickness; Varying from 8.3 m<sup>2</sup>⋅K/GW to 34 m<sup>2</sup>⋅K/GW with thickness difference of only 2.8 nm. Theoretical analysis revealed the origin of this phenomena: a diamond/SiO<sub>x</sub> inter-diffusion layer extend the vibrational frequency, far exceeding that of crystalline diamond, which increases the lattice vibrational mismatch and suppresses phonon transmission.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120458"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Record-Low thermal boundary resistance at bonded GaN/diamond interface by controlling ultrathin heterogeneous amorphous layer\",\"authors\":\"Bin Xu ,&nbsp;Fengwen Mu ,&nbsp;Yingzhou Liu ,&nbsp;Rulei Guo ,&nbsp;Shiqian Hu ,&nbsp;Junichiro Shiomi\",\"doi\":\"10.1016/j.actamat.2024.120458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal boundary resistance (TBR) in semiconductor-on-diamond structure bottlenecks efficient heat dissipation in electronic devices. In this study, to reduce the TBR between GaN and diamond, surface-activated bonding with a hybrid SiO<sub>x</sub>-Ar ion source was initially applied to achieve an ultrathin interfacial layer. The simultaneous surface activation and slow deposition of the SiO<sub>x</sub> binder layer enabled precise control over layer thickness (2.5–5.3 nm) and formation of an amorphous heterogeneous nanostructure comprising a SiO<sub>x</sub> region between two inter-diffusion regions. Crucially, the 2.5-nm-thick interfacial layer achieved a TBR of 8.3 m<sup>2</sup>⋅K/GW, a record low for direct-bonded GaN/diamond interface. A remarkable feature is that the TBR is extremely sensitive to the interfacial thickness; Varying from 8.3 m<sup>2</sup>⋅K/GW to 34 m<sup>2</sup>⋅K/GW with thickness difference of only 2.8 nm. Theoretical analysis revealed the origin of this phenomena: a diamond/SiO<sub>x</sub> inter-diffusion layer extend the vibrational frequency, far exceeding that of crystalline diamond, which increases the lattice vibrational mismatch and suppresses phonon transmission.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"282 \",\"pages\":\"Article 120458\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645424008073\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008073","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

半导体金刚石结构中的热边界电阻(TBR)是电子设备高效散热的瓶颈。在这项研究中,为了降低氮化镓和金刚石之间的热边界电阻(TBR),最初采用了混合氧化硅-氧化铝离子源进行表面活性键合,以获得超薄界面层。同时进行的表面活化和氧化硅粘合剂层的缓慢沉积实现了对层厚度(2.5-5.3 nm)的精确控制,并形成了由两个相互扩散区域之间的氧化硅区域组成的无定形异质纳米结构。最重要的是,2.5 nm 厚的界面层实现了 8.3 m2⋅K/GW 的 TBR,创下了直接键合氮化镓/金刚石界面的最低纪录。其显著特点是 TBR 对界面厚度极为敏感;厚度差异从 8.3 m2⋅K/GW 到 34 m2⋅K/GW 仅为 2.8 nm。理论分析揭示了这一现象的根源:金刚石/氧化硅相互扩散层扩展了振动频率,远远超过了结晶金刚石的振动频率,从而增加了晶格振动失配,抑制了声子传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Record-Low thermal boundary resistance at bonded GaN/diamond interface by controlling ultrathin heterogeneous amorphous layer

Record-Low thermal boundary resistance at bonded GaN/diamond interface by controlling ultrathin heterogeneous amorphous layer

Record-Low thermal boundary resistance at bonded GaN/diamond interface by controlling ultrathin heterogeneous amorphous layer
Thermal boundary resistance (TBR) in semiconductor-on-diamond structure bottlenecks efficient heat dissipation in electronic devices. In this study, to reduce the TBR between GaN and diamond, surface-activated bonding with a hybrid SiOx-Ar ion source was initially applied to achieve an ultrathin interfacial layer. The simultaneous surface activation and slow deposition of the SiOx binder layer enabled precise control over layer thickness (2.5–5.3 nm) and formation of an amorphous heterogeneous nanostructure comprising a SiOx region between two inter-diffusion regions. Crucially, the 2.5-nm-thick interfacial layer achieved a TBR of 8.3 m2⋅K/GW, a record low for direct-bonded GaN/diamond interface. A remarkable feature is that the TBR is extremely sensitive to the interfacial thickness; Varying from 8.3 m2⋅K/GW to 34 m2⋅K/GW with thickness difference of only 2.8 nm. Theoretical analysis revealed the origin of this phenomena: a diamond/SiOx inter-diffusion layer extend the vibrational frequency, far exceeding that of crystalline diamond, which increases the lattice vibrational mismatch and suppresses phonon transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信