{"title":"通过溶液合成技术提高γ'-V2O5 在纳离子电池中的充电效率","authors":"Dauren Batyrbekuly , Barbara Laïk , Zhumabay Bakenov , Ankush Bhatia , Jean-Pierre Pereira-Ramos , Rita Baddour-Hadjean","doi":"10.1016/j.actamat.2024.120461","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the γ’-V<sub>2</sub>O<sub>5</sub> cathode material was prepared through a solution synthesis technique leading to homogeneous, fine and porous particles 100–200 nm in size. This successful preparation allows to overcome the huge drawback of the microsized material in terms of charge efficiency and to take benefit of the attractive Na insertion properties of γ’-V<sub>2</sub>O<sub>5,</sub> i. e. a significant available capacity of 145 mAh g<sup>- 1</sup>, a high working potential of about 3.25 V vs. Na<sup>+</sup>/Na, an excellent charge efficiency, a high-rate capability and good cycle life. A detailed structural study upon Na insertion/extraction shows that the proposed nanosizing approach promotes a homogeneous Na solubility and solid solution behavior in a wider composition range (0.4 < <em>x</em> ≤ 1 in γ-Na<sub>x</sub>V<sub>2</sub>O<sub>5</sub>) compared to the results previously reported for solid-state synthesized γ’-V<sub>2</sub>O<sub>5</sub>. Furthermore, highly reversible structural changes are evidenced. Key kinetic parameters governing the Na insertion-extraction reaction are discussed thanks to an impedance spectroscopy study revealing a faster Na diffusivity in the one-phase region. The obtained results allow a comprehensive understanding of the enhanced performance exhibited by the present sub-micronic γ’-V<sub>2</sub>O<sub>5</sub> material.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120461"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the charge efficiency of γ’-V2O5 for Na-ion battery through a solution synthesis technique\",\"authors\":\"Dauren Batyrbekuly , Barbara Laïk , Zhumabay Bakenov , Ankush Bhatia , Jean-Pierre Pereira-Ramos , Rita Baddour-Hadjean\",\"doi\":\"10.1016/j.actamat.2024.120461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the γ’-V<sub>2</sub>O<sub>5</sub> cathode material was prepared through a solution synthesis technique leading to homogeneous, fine and porous particles 100–200 nm in size. This successful preparation allows to overcome the huge drawback of the microsized material in terms of charge efficiency and to take benefit of the attractive Na insertion properties of γ’-V<sub>2</sub>O<sub>5,</sub> i. e. a significant available capacity of 145 mAh g<sup>- 1</sup>, a high working potential of about 3.25 V vs. Na<sup>+</sup>/Na, an excellent charge efficiency, a high-rate capability and good cycle life. A detailed structural study upon Na insertion/extraction shows that the proposed nanosizing approach promotes a homogeneous Na solubility and solid solution behavior in a wider composition range (0.4 < <em>x</em> ≤ 1 in γ-Na<sub>x</sub>V<sub>2</sub>O<sub>5</sub>) compared to the results previously reported for solid-state synthesized γ’-V<sub>2</sub>O<sub>5</sub>. Furthermore, highly reversible structural changes are evidenced. Key kinetic parameters governing the Na insertion-extraction reaction are discussed thanks to an impedance spectroscopy study revealing a faster Na diffusivity in the one-phase region. The obtained results allow a comprehensive understanding of the enhanced performance exhibited by the present sub-micronic γ’-V<sub>2</sub>O<sub>5</sub> material.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"282 \",\"pages\":\"Article 120461\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645424008103\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008103","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究中,γ'-V2O5 阴极材料是通过溶液合成技术制备而成的,其颗粒均匀、细小且多孔,大小为 100-200 纳米。这种成功的制备方法克服了微型材料在充电效率方面的巨大缺陷,并利用了 γ'-V2O5 极具吸引力的 Na 插入特性,即 145 mAh g- 1 的显著可用容量、对 Na+/Na 约 3.25 V 的高工作电位、出色的充电效率、高速率能力和良好的循环寿命。对 Na 插入/萃取后的详细结构研究表明,与之前报道的固态合成γ'-V2O5 的结果相比,所提出的纳米化方法在更宽的成分范围(γ-NaxV2O5 中为 0.4 < x ≤ 1)内促进了均匀的 Na 溶解度和固溶行为。此外,还证明了高度可逆的结构变化。通过阻抗光谱研究发现,在单相区域,Na 的扩散速度更快,因此对 Na 插入萃取反应的关键动力学参数进行了讨论。所获得的结果有助于全面理解目前的亚微米级 γ'-V2O5 材料所表现出的更高性能。
Unlocking the charge efficiency of γ’-V2O5 for Na-ion battery through a solution synthesis technique
In this study, the γ’-V2O5 cathode material was prepared through a solution synthesis technique leading to homogeneous, fine and porous particles 100–200 nm in size. This successful preparation allows to overcome the huge drawback of the microsized material in terms of charge efficiency and to take benefit of the attractive Na insertion properties of γ’-V2O5, i. e. a significant available capacity of 145 mAh g- 1, a high working potential of about 3.25 V vs. Na+/Na, an excellent charge efficiency, a high-rate capability and good cycle life. A detailed structural study upon Na insertion/extraction shows that the proposed nanosizing approach promotes a homogeneous Na solubility and solid solution behavior in a wider composition range (0.4 < x ≤ 1 in γ-NaxV2O5) compared to the results previously reported for solid-state synthesized γ’-V2O5. Furthermore, highly reversible structural changes are evidenced. Key kinetic parameters governing the Na insertion-extraction reaction are discussed thanks to an impedance spectroscopy study revealing a faster Na diffusivity in the one-phase region. The obtained results allow a comprehensive understanding of the enhanced performance exhibited by the present sub-micronic γ’-V2O5 material.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.