{"title":"解密家族性和散发性阿尔茨海默病中淀粉样β纤维的形态差异","authors":"Gangtong Huang, Zhiyuan Song, Yun Xu, Yunxiang Sun, Feng Ding","doi":"10.1021/acs.jcim.4c01471","DOIUrl":null,"url":null,"abstract":"The aggregation of amyloid-β (Aβ) into amyloid fibrils is the major pathological hallmark of Alzheimer’s disease (AD). Aβ fibrils can adopt a variety of morphologies, the relative populations of which are recently found to be associated with different AD subtypes such as familial and sporadic AD (fAD and sAD, respectively). The two AD subtypes differ in their ages of onset, AD-related genetic predispositions, and dominant Aβ fibril morphologies. We postulate that these disease subtype-dependent fibril morphology differences can be attributed to the intrinsic fibril properties and interacting molecules in the environment. Using atomistic discrete molecular dynamics simulations, we demonstrated that the fAD-dominant morphology exhibited a lower free-energy barrier for fibril growth but also a lower stability compared with the sAD-dominant fibril morphology, resulting in the time-dependent population change consistent with experimental observations. Additionally, we studied the effect of the Bri2 BRICHOS domain, an endogenous protein that has been reported to inhibit Aβ aggregation by preferential binding to fibrils, as one of the possible environmental factors. The Bri2 BRICHOS domain showed stronger binding to the fAD-dominant fibril than the sAD-dominant fibril <i>in silico</i>, suggesting a more effective suppression of fAD-dominant fibril formation. This result explains the high population of the sAD-dominant fibril morphology in sporadic cases with normal Bri2 functions. Genetic predisposition in fAD, on the other hand, might impair or overwhelm Bri2 functions, leading to a high population of fAD-associated fibril morphology. Together, our computational findings provide a theoretical framework for elucidating the AD subtypes entailed by distinct dominant amyloid fibril morphologies.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"53 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Morphological Difference of Amyloid-β Fibrils in Familial and Sporadic Alzheimer’s Diseases\",\"authors\":\"Gangtong Huang, Zhiyuan Song, Yun Xu, Yunxiang Sun, Feng Ding\",\"doi\":\"10.1021/acs.jcim.4c01471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aggregation of amyloid-β (Aβ) into amyloid fibrils is the major pathological hallmark of Alzheimer’s disease (AD). Aβ fibrils can adopt a variety of morphologies, the relative populations of which are recently found to be associated with different AD subtypes such as familial and sporadic AD (fAD and sAD, respectively). The two AD subtypes differ in their ages of onset, AD-related genetic predispositions, and dominant Aβ fibril morphologies. We postulate that these disease subtype-dependent fibril morphology differences can be attributed to the intrinsic fibril properties and interacting molecules in the environment. Using atomistic discrete molecular dynamics simulations, we demonstrated that the fAD-dominant morphology exhibited a lower free-energy barrier for fibril growth but also a lower stability compared with the sAD-dominant fibril morphology, resulting in the time-dependent population change consistent with experimental observations. Additionally, we studied the effect of the Bri2 BRICHOS domain, an endogenous protein that has been reported to inhibit Aβ aggregation by preferential binding to fibrils, as one of the possible environmental factors. The Bri2 BRICHOS domain showed stronger binding to the fAD-dominant fibril than the sAD-dominant fibril <i>in silico</i>, suggesting a more effective suppression of fAD-dominant fibril formation. This result explains the high population of the sAD-dominant fibril morphology in sporadic cases with normal Bri2 functions. Genetic predisposition in fAD, on the other hand, might impair or overwhelm Bri2 functions, leading to a high population of fAD-associated fibril morphology. Together, our computational findings provide a theoretical framework for elucidating the AD subtypes entailed by distinct dominant amyloid fibril morphologies.\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01471\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01471","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Deciphering the Morphological Difference of Amyloid-β Fibrils in Familial and Sporadic Alzheimer’s Diseases
The aggregation of amyloid-β (Aβ) into amyloid fibrils is the major pathological hallmark of Alzheimer’s disease (AD). Aβ fibrils can adopt a variety of morphologies, the relative populations of which are recently found to be associated with different AD subtypes such as familial and sporadic AD (fAD and sAD, respectively). The two AD subtypes differ in their ages of onset, AD-related genetic predispositions, and dominant Aβ fibril morphologies. We postulate that these disease subtype-dependent fibril morphology differences can be attributed to the intrinsic fibril properties and interacting molecules in the environment. Using atomistic discrete molecular dynamics simulations, we demonstrated that the fAD-dominant morphology exhibited a lower free-energy barrier for fibril growth but also a lower stability compared with the sAD-dominant fibril morphology, resulting in the time-dependent population change consistent with experimental observations. Additionally, we studied the effect of the Bri2 BRICHOS domain, an endogenous protein that has been reported to inhibit Aβ aggregation by preferential binding to fibrils, as one of the possible environmental factors. The Bri2 BRICHOS domain showed stronger binding to the fAD-dominant fibril than the sAD-dominant fibril in silico, suggesting a more effective suppression of fAD-dominant fibril formation. This result explains the high population of the sAD-dominant fibril morphology in sporadic cases with normal Bri2 functions. Genetic predisposition in fAD, on the other hand, might impair or overwhelm Bri2 functions, leading to a high population of fAD-associated fibril morphology. Together, our computational findings provide a theoretical framework for elucidating the AD subtypes entailed by distinct dominant amyloid fibril morphologies.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.