Francisco Damasceno Freitas, Laice Neves de Oliveira
{"title":"用于计算能源系统中功率流问题解决方案的分数阶派生牛顿-拉斐森方法","authors":"Francisco Damasceno Freitas, Laice Neves de Oliveira","doi":"10.1007/s13540-024-00342-9","DOIUrl":null,"url":null,"abstract":"<p>Some nonlinear real-valued equations have no solution in the real number field, and only roots of this nature are of practical interest. However, complex roots associated with the solution may introduce an interpretation of the physical problem analysis. This paper investigates the solution of nonlinear equations exploiting fractional order derivative (FOD) calculus resources. The theory addresses a solver that considers the FOD and Newton-Raphson method. The problem is extended to a multivariate fractional order derivative (MFOD) method so that a set of nonlinear equations can be resolved iteratively. Applications to the computation of the power flow problem in energy systems are used to illustrate some types of equations and solutions. The MFOD uses a numerical limits technique to determine a Jacobian required for the fractional application. This work demonstrates how real-valued nonlinear equations with complex roots can be solved by the MFOD Newton-Raphson approach. The results indicate the potentiality of the method reaches complex-valued solutions despite the iterative process starting with a real-valued guess. The complex-valued results are interpreted considering the connection between the imaginary part of a root and the divergence of the classical Newton-Raphson (CNR) method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fractional Order Derivative Newton-Raphson Method for the Computation of the Power Flow Problem Solution in Energy Systems\",\"authors\":\"Francisco Damasceno Freitas, Laice Neves de Oliveira\",\"doi\":\"10.1007/s13540-024-00342-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Some nonlinear real-valued equations have no solution in the real number field, and only roots of this nature are of practical interest. However, complex roots associated with the solution may introduce an interpretation of the physical problem analysis. This paper investigates the solution of nonlinear equations exploiting fractional order derivative (FOD) calculus resources. The theory addresses a solver that considers the FOD and Newton-Raphson method. The problem is extended to a multivariate fractional order derivative (MFOD) method so that a set of nonlinear equations can be resolved iteratively. Applications to the computation of the power flow problem in energy systems are used to illustrate some types of equations and solutions. The MFOD uses a numerical limits technique to determine a Jacobian required for the fractional application. This work demonstrates how real-valued nonlinear equations with complex roots can be solved by the MFOD Newton-Raphson approach. The results indicate the potentiality of the method reaches complex-valued solutions despite the iterative process starting with a real-valued guess. The complex-valued results are interpreted considering the connection between the imaginary part of a root and the divergence of the classical Newton-Raphson (CNR) method.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00342-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00342-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
有些非线性实值方程在实数域中没有解,只有这种性质的根才具有实际意义。然而,与解相关的复根可能会引入对物理问题分析的解释。本文利用分数阶导数(FOD)微积分资源研究非线性方程的解法。该理论涉及一种考虑了 FOD 和牛顿-拉斐森方法的求解器。该问题被扩展到多元分数阶导数 (MFOD) 方法,从而可以迭代地求解一组非线性方程。该方法应用于能源系统中功率流问题的计算,以说明一些方程类型和解法。MFOD 使用数值极限技术来确定分数应用所需的雅各布。这项工作展示了如何利用 MFOD 牛顿-拉斐森方法求解具有复根的实值非线性方程。结果表明,尽管迭代过程是从实值猜测开始的,但该方法仍具有达到复值解的潜力。考虑到根的虚部与经典牛顿-拉斐森(CNR)方法的发散之间的联系,可以对复值结果进行解释。
A Fractional Order Derivative Newton-Raphson Method for the Computation of the Power Flow Problem Solution in Energy Systems
Some nonlinear real-valued equations have no solution in the real number field, and only roots of this nature are of practical interest. However, complex roots associated with the solution may introduce an interpretation of the physical problem analysis. This paper investigates the solution of nonlinear equations exploiting fractional order derivative (FOD) calculus resources. The theory addresses a solver that considers the FOD and Newton-Raphson method. The problem is extended to a multivariate fractional order derivative (MFOD) method so that a set of nonlinear equations can be resolved iteratively. Applications to the computation of the power flow problem in energy systems are used to illustrate some types of equations and solutions. The MFOD uses a numerical limits technique to determine a Jacobian required for the fractional application. This work demonstrates how real-valued nonlinear equations with complex roots can be solved by the MFOD Newton-Raphson approach. The results indicate the potentiality of the method reaches complex-valued solutions despite the iterative process starting with a real-valued guess. The complex-valued results are interpreted considering the connection between the imaginary part of a root and the divergence of the classical Newton-Raphson (CNR) method.